Эффективность применения противоморозных добавок.

Экспресс-метод оценки эффективности противоморозных добавок Текст научной статьи по специальности « Технологии материалов»

Аннотация научной статьи по технологиям материалов, автор научной работы — Гущин С.В., Бабицкий В.В.

Применение химических добавок в практике ведения бетонных работ при отрицательных температурах удобный и экономичный метод. Гамма используемых противоморозных добавок весьма широка. Рекламируются многочисленные новые добавки, характеристики которых практически не изучены. Оценка эффективности противоморозных добавок, к сожалению, длительна и не дает исчерпывающей информации о процессах структурообразования бетона , в связи с чем разработка оперативной и доступной для строительных организаций методики настоятельно необходима. Исследованы процессы замерзания водных растворов противоморозных добавок и твердения цементного теста с ними. Предложена методика определения температуры замерзания водных растворов химических добавок различного назначения. На примере добавок нитрата кальция и формиата натрия установлена идентичность температуры замерзания водного раствора химической добавки и цементного теста с равной концентрацией добавки в поровой жидкости теста. Показана возможность оценки эффективности действия противоморозных добавок по кинетике изменения температуры цементного теста с добавками посредством его последовательного замораживания и размораживания. Предложена методика оперативной оценки области применения химических добавок для бетонирования изделий при отрицательных температурах. Методика не требует дефицитного и дорогостоящего испытательного оборудования, применима в рядовых строительных организациях, доступна работникам низкой квалификации. Показана возможность разработки оригинальной методики проектирования состава бетона , основывающейся на оперативных определениях эффективности одинарных и комплексных противоморозных добавок.

Похожие темы научных работ по технологиям материалов , автор научной работы — Гущин С.В., Бабицкий В.В.

Rapid test method for evaluation of antifreeze additive efficiency

Usage of chemical additives while executing concrete works at negative temperatures is considered as a convenient and economical method. Range of the used antifreeze additives is rather wide. A great number of new additives are advertised but their characteristics have not been practically studied. Evaluation of the antifreeze additive efficiency is unfortunately rather long process and it does not provide comprehensive data on concrete structure formation processes. Due to this development of rapid and comprehensive methodology for construction companies is urgently required. Freezing processes of antifreeze additive aqueous solutions and hardening of cement paste with them have been investigated in the paper. The paper proposes a methodology for determination of freezing point for aqueous solutions of chemical additives of various applications. Identity of freezing point for a chemical additive aqueous solution and cement paste with an equal concentration of the additive in the paste pore fluid has been determined while taking calcium nitrate and sodium formate additives as an example. The paper demonstrates the possibility to evaluate efficiency of antifreeze additive action on the basis of kinetics in temperature changes of the cement paste with additives by its consecutive freezing and defrosting. A methodology for operational evaluation in the field of chemical additive application for concreting items at negative temperatures has been offered in the paper. The methodology does not require deficient and expensive test-equipment. It can be applied at ordinary construction companies and it is comprehensible for personnel of low-qualification. The paper shows the possibility to develop an original methodology for designing concrete structure which is based on operating efficiency determinations for single and integrated antifreeze additives.

Текст научной работы на тему «Экспресс-метод оценки эффективности противоморозных добавок»

ЭКСПРЕСС-МЕТОД ОЦЕНКИ ЭФФЕКТИВНОСТИ ПРОТИВОМОРОЗНЫХ ДОБАВОК

Асп. ГУЩИН С. В.1), докт. техн. наук, проф. БАБИЦКИЙ В. В.1)

‘■’Белорусский национальный технический университет (Минск, Республика Беларусь)

Применение химических добавок в практике ведения бетонных работ при отрицательных температурах – удобный и экономичный метод. Гамма используемых противоморозных добавок весьма широка. Рекламируются многочисленные новые добавки, характеристики которых практически не изучены. Оценка эффективности противоморозных добавок, к сожалению, длительна и не дает исчерпывающей информации о процессах структурообразования бетона, в связи с чем разработка оперативной и доступной для строительных организаций методики настоятельно необходима. Исследованы процессы замерзания водных растворов противоморозных добавок и твердения цементного теста с ними. Предложена методика определения температуры замерзания водных растворов химических добавок различного назначения. На примере добавок нитрата кальция и формиата натрия установлена идентичность температуры замерзания водного раствора химической добавки и цементного теста с равной концентрацией добавки в поровой жидкости теста. Показана возможность оценки эффективности действия противоморозных добавок по кинетике изменения температуры цементного теста с добавками посредством его последовательного замораживания и размораживания. Предложена методика оперативной оценки области применения химических добавок для бетонирования изделий при отрицательных температурах. Методика не требует дефицитного и дорогостоящего испытательного оборудования, применима в рядовых строительных организациях, доступна работникам низкой квалификации. Показана возможность разработки оригинальной методики проектирования состава бетона, основывающейся на оперативных определениях эффективности одинарных и комплексных противоморозных добавок. Ключевые слова: бетон, противоморозные добавки, эффективность, методика оценки. Ил. 8. Табл. 4. Библиогр.: 20 назв.

RAPID TEST METHOD FOR EVALUATION OF ANTIFREEZE ADDITIVE EFFICIENCY

GUSHCHIN S. V.1), BABITSKY V. V.1)

1 Belarusian National Technical University (Мп^ Republic of Be^rus)

Usage of chemical additives while executing concrete works at negative temperatures is considered as a convenient and economical method. Range of the used antifreeze additives is rather wide. A great number of new additives are advertised but their characteristics have not been practically studied. Evaluation of the antifreeze additive efficiency is unfortunately rather long process and it does not provide comprehensive data on concrete structure formation processes. Due to this development of rapid and comprehensive methodology for construction companies is urgently required. Freezing processes of antifreeze additive aqueous solutions and hardening of cement paste with them have been investigated in the paper. The paper proposes a methodology for determination of freezing point for aqueous solutions of chemical additives of various applications. Identity of freezing point for a chemical additive aqueous solution and cement paste with an equal concentration of the additive in the paste pore fluid has been determined while taking calcium nitrate and sodium formate additives as an example. The paper demonstrates the possibility to evaluate efficiency of antifreeze additive action on the basis of kinetics in temperature changes of the cement paste with additives by its consecutive freezing and defrosting. A methodology for operational evaluation in the field of chemical additive application for concreting items at negative temperatures has been offered in the paper. The methodology does not require deficient and expensive test-equipment. It can be applied at ordinary construction companies and it is comprehensible for personnel of low-qualification. The paper shows the possibility to develop an original methodology for designing concrete structure which is based on operating efficiency determinations for single and integrated antifreeze additives.

Читайте также:
Тумба с сиденьем в прихожую (45 фото): узкая тумбочка или комод для обуви, варианты с мягким сиденьем в коридор, модели под телефон

Keywords: concrete, antifreeze additives, efficiency, evaluation methodology. Fig. 8. ТаЬ. 4. Ref.: 20 titles.

Введение. Применение химических добавок в технологии производства бетонных работ при низких температурах представляет собой один из наиболее широко распространенных мето-

Наука итехника, № 6, 2015

дов зимнего бетонирования [1-3]. «Введение противоморозных добавок – технологически наиболее простой, удобный и экономически выгодный способ зимнего бетонирования. Этот

способ в 1,2-1,4 раза экономичнее, чем способ паропрогрева и бетонирования с предшествующим ограждением сооружения и его утеплением изнутри и в 1,3-1,5 раза экономичнее электропрогрева и электрообогрева. Безобогревное зимнее бетонирование благодаря применению противоморозных добавок позволяет экономить тепло- и электроэнергию при более гибкой технологии проведения работ» [4].

Общеизвестно, что твердение цементных бетонов замедляется при снижении температуры и практически прекращается при замерзании жидкой фазы. Поэтому для обеспечения твердения в зимних условиях необходимо предотвращать замерзание воды в бетоне, что может быть достигнуто либо сохранением положительной температуры бетона в период твердения до набора им критической прочности, либо снижением температуры замерзания жидкой фазы путем введения в состав бетона различных химических добавок.

В принципе, основное назначение противоморозных добавок – снизить температуру замерзания бетонной смеси (антифризное действие), т. е. обеспечить возможность ведения бетонных работ при отрицательных температурах. В свою очередь, температура замерзания бетонной смеси определяется температурой замерзания поровой жидкости (косвенно – температурой замерзания водного раствора добавки, используемой для затворения сухих компонентов бетона). Характеристики таких добавок представлены как в нормативных документах, например в ТКП 45-5.03-21-2006 «Бетонные работы при отрицательных температурах воздуха. Правила производства», так и в многочисленных литературных источниках [1-8].

При этом гамма рекомендуемых добавок с каждым годом растет – в различных проспектах, статьях, на совещаниях и симпозиумах рекламируются многочисленные химические добавки – как действительно эффективные, так и относящиеся к разряду «чудесных». Закономерен вопрос: как строительные организации могут выделить и использовать именно те добавки, какие им нужны, основываясь на экспериментальной проверке их свойств, а не рекламе? Для этого существуют стандартизированные методики оценки эффективности противомороз-

ных добавок, представленные в ГОСТ 28084-89 «Жидкости охлаждающие низкозамерзающие. Общие технические условия» и ГОСТ 30459-96 «Добавки для бетонов. Методы определения эффективности».

Антифризное действие противоморозных добавок. Рассмотрим технику проведения эксперимента, позволяющую практически в любой строительной организации оперативно, за несколько суток, определить эффективность про-тивоморозной добавки, которая слагается из возможности снижения температуры замораживания и влияния данной добавки (или комплекса добавок) на кинетику структурообразо-вания цементного теста (цементного камня), бетонной смеси (бетона). Что касается определения температуры замерзания водного раствора противоморозной добавки (или иной, поскольку данная величина является характеристикой, определяющей область применения добавки), то существует методика определения данной температуры, описанная в ГОСТ 28084-89. Она предполагает, что испытуемая жидкость помещается в холодильник и охлаждается при постоянном перемешивании до появления в ней кристаллов льда. Этот момент определяется визуально, когда невооруженным взглядом отмечается в жидкости помутнение как признак начала кристаллизации. Температура, при которой заметили помутнение, фиксируется как температура начала кристаллизации. Вполне работоспособна и обратная методика, согласно которой раствор добавки вначале замораживают, а затем (опять-таки визуально) уже при положительной температуре фиксируют температуру оттаивания раствора. Естественно, описанная техника определения температуры замерзания несовершенна, поскольку подвержена влиянию человеческого фактора и может приводить к значительным погрешностям в результатах.

Авторы статьи предлагают методику, основанную на известном эффекте неизменности температуры при достижении температуры замерзания жидкости (в рассматриваемом случае -химической добавки). То есть на кривой «время – температура жидкости» наблюдается четко выраженная «ступенька», что связано с образованием новых кристаллов при замерзании жидкости, контактирующей с охлаждающей средой и, естественно, отбором теплоты. Общая темпе-

Наука итехника, № 6, 2015

ратура замерзающей жидкости при этом не изменяется. Такая схема замораживания характерна для жидкостей с наличием центров кристаллизации. В противном случае наблюдается некоторое кратковременное снижение температуры с последующим ростом до температуры кристаллизации и опять-таки образованием «ступеньки» (горизонтального участка). В этом случае при оценке температуры замораживания кратковременный спад температуры следует игнорировать. Установка для исследования кинетики замерзания достаточно проста.

Читайте также:
Чем же так хороша стиральная машинка с сушкой

Датчик температуры (DS 1921) помещается в алюминиевый пенал, закрытый теплоизолирующей пробкой, а пенал, в свою очередь, -в поплавок, плавающий на поверхности исследуемой жидкости. Емкость с раствором добавки помещается в морозильную камеру (в рассматриваемом случае обычный бытовой морозильник, обеспечивающий температуру среды минус 18 °С) и замораживается при температуре, заведомо ниже температуры замерзания жидкости. Датчик DS 1921 периодически (в соответствии с заданной частотой) записывает температуру среды. Затем полученная информация с помощью компьютера выдается в виде таблицы, строится график изменения температуры и фиксируется момент замерзания добавки. Примеры таких графиков применительно к сравнительно малоизученным проти-воморозным добавкам – нитрату кальция (НК) и формиату натрия (ФН) – приведены на рис. 1, 2. Наличие описанного выше незначительного снижения температуры можно заметить, например, на рис. 1, 2 для высоких концентраций НК и ФН (30 и 14 % соответственно) через 3,5 -4,0 ч после начала замораживания.

Рис. 1. Изменение температуры раствора добавки НК в процессе замораживания

Наука итехника, № 6, 2015

Полученные численные значения «ступенек», соответствующих температурам замерзания растворов, приведены в табл. 1.

Рис. 2. Изменение температуры раствора добавки ФН в процессе замораживания

Температура замерзания растворов добавок НК и ФН

Концентрация раствора, % Температура замерзания раствора, оС

Противоморозные добавки: критерии технологической и технической эффективности. Обеспечение долговечности железобетонных конструкций

| 26 Февраля 2012

В данной статье будут рассмотрены критерии технологической и технической эффективности действия противоморозных добавок и методы определения и оценки эффективности их действия.

Современный рынок строительной химии сегодня предлагает широкий спектр модифицирующих добавок для бетонных и растворных смесей, изготавливаемых с применением вяжущих на основе портландцементного клинкера. В 2011 году введены в действие обновленные нормативные документы, устанавливающие основные требования к модификаторам бетонных и растворных смесей, в которых учтены основные нормативные положения европейских стандартов. Внесение в стандарты, разрабатываемые в Российской Федерации, основных нормативных положений европейских стандартов является важным шагом на пути гармонизации в области обеспечения взаимного понимания результатов испытаний и информации, содержащейся в стандартах, взаимозаменяемости продукции.

Обзор обновлений в нормативной документации

ГОСТ 24211-2008 «Добавки для бетонов и строительных растворов. Общие технические условия» распространяется на неорганические и органические вещества и устанавливает классификацию и критерии технологической и технической эффективности действия добавок в смесях, бетонах и растворах. В настоящем стандарте учтены основные нормативные положения регионального стандарта ЕН 934-2:2001 «Добавки для бетонов, строительных и инъекционных растворов – Часть 2. Добавки для бетонов – Определения, требования, соответствие, маркировка и этикетирование» (EN 934-2:2001 «Admixtures for concrete mortars and grout – Part 2: Concrete admixtures – Definitions, requirements, conformity, marking and labelling») в части определений и технических требований к основным видам химических добавок.

ГОСТ 30459-2008 «Добавки для бетонов и строительных растворов. Определение и оценка эффективности» устанавливает требования к методам испытаний добавок, которые следует учитывать при оценке их эффективности действия в смесях, бетонах и растворах в соответствии с критериями эффективности по ГОСТ 24211 и содержит основные нормативные положения европейского стандарта ЕН 934-6:2002 «Добавки для бетонов, строительных и инъекционных растворов. Часть 6. Изготовление образцов, контроль соответствия и подтверждение соответствия» (EN 934-6:2002 «Admixtures for concrete, mortars and grout – Part 6: Sampling, conformity control and evaluation of conformity») в части требований к изготовлению образцов для испытаний отдельных видов добавок, ЕН 480-1:1997 «Добавки для бетонов, строительных и инъекционных растворов. Методы испытаний. Часть 1. Контрольный бетон и контрольный строительный раствор для испытаний» (EN 480-1:1997 «Admixtures for concrete, mortars and grout – Part 1: Reference concrete and mortar for testing») в части методов испытаний отдельных видов добавок.

«Холодный» и «теплый» бетон и раствор

Согласно ГОСТ 24211, по основному эффекту действия противоморозные добавки относятся к классу добавок, придающих бетонам и растворам специальные свойства. В новой версии данного стандарта введено разделение противоморозных добавок на добавки для «холодного» и «теплого» бетона и раствора. Введены два новых термина:

«Холодный» бетон и раствор – бетон или раствор, изготовленный из бетонной или растворной смеси с противоморозной добавкой, постоянно твердеющий при отрицательной температуре.

«Теплый» бетон и раствор – бетон или раствор, изготовленный из бетонной или растворной смеси с противоморозной добавкой, обеспечивающей незамерзание смеси при отрицательной температуре на время от ее изготовления до начала обогрева забетонированной конструкции.

Противоморозные добавки для «холодного» бетона и раствора должны обеспечивать твердение при отрицательной температуре бетона или раствора. При этом набор прочности в возрасте 28 суток должен составлять 30% и более контрольного состава нормального твердения.

Противоморозные добавки для «теплого» бетона и раствора должны обеспечивать защиту смеси от замерзания на время от ее изготовления до укладки и подачи внешнего тепла. При этом набор прочности в возрасте 28 суток должен составлять 95% и более контрольного состава нормального твердения.

Для обеспечения стойкости бетона железобетонных конструкций, эксплуатируемых в агрессивных средах, и защитной способности бетона по отношению к стальной арматуре при выборе модифицирующих добавок необходимо учитывать требования ГОСТ 31384 «Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования». Ввиду особенностей вещественного состава активных компонентов, обеспечивающего основной эффект действия, при выборе противоморозных добавок необходимо обеспечить соблюдение следующих требований:

– общее количество химических добавок, при их применении для приготовления бетона или раствора, не должно составлять более 5% от массы цемента;

– максимально допустимое содержание хлоридов в бетоне, выраженное в процентах хлорид-ионов к массе цемента, не должно превышать значений, приведенных в таблице 1;

Читайте также:
Щипцы гофре для прикорневого объема

– в состав бетона не допускается введение хлористых солей при изготовлении следующих железобетонных изделий и конструкций: с напрягаемой арматурой, с ненапрягаемой проволочной арматурой класса В-I диаметром 5 мм и менее, эксплуатируемых в условиях влажного или мокрого режима, с автоклавной обработкой, подвергающихся электрокоррозии;

– не допускается введение хлористых солей в состав бетонов и растворов для инъектирования каналов предварительно напряженных конструкций, а также для замоноличивания швов и стыков сборных и сборно-монолитных железобетонных конструкций;

– при наличии в заполнителях потенциально реакционноспособных пород не допускается введение в бетон солей натрия и калия.

Применение современных технологий ведения бетонных работ требует стабильного обеспечения сохраняемости технологических показателей бетонной смеси на период транспортировки и укладки в конструкцию. Кроме того, возросшие требования к эстетичности облика зданий и сооружений предполагают принятие соответствующих мер по снижению вероятности высолообразования на бетонных поверхностях.

Все приведенные выше аспекты имеют принципиальное значение и должны учитываться на стадии проектирования бетонной либо растворной смеси, при подборе ее компонентов.

Противоморозные добавки. Результаты испытаний

Современный рынок строительной химии предлагает большой выбор высокотехнологичных противоморозных добавок, разработанных с учетом актуальных требований. Мировые лидеры по производству строительной химии предлагают противоморозные добавки, обладающие двумя или несколькими эффектами действия. Эти добавки состоят из комплекса компонентов (например, комплекс эфира поликарбоксилата и нитрата кальция, водный раствор нафталинсульфоната, лигносульфоната и нитрата натрия), не содержат ионов хлора и не агрессивны к стальной арматуре. Область применения бетонных смесей с такими добавками существенно расширена: укладка бетона при отрицательных температурах, перекачивание бетонной смеси бетононасосом и бетонирование густоармированных конструкций, изготовление железобетонных и напряженных бетонных конструкций.

В ГОСТ 30459-2008 приведены методы испытания противоморозных добавок. Эффективность действия противоморозных добавок для «холодного» бетона и раствора оценивают сравнением прочности бетонов и растворов основных составов, твердевших при заданной отрицательной температуре, с прочностью бетона и раствора контрольного состава, твердевшего в нормальных условиях. Образцы основных составов непосредственно после изготовления должны быть помещены на 28 суток в морозильную камеру с заданной отрицательной температурой (соответствующей виду и рекомендуемой дозировке испытываемой добавки). Образцы должны быть испытаны на сжатие после оттаивания на воздухе при температуре 20 ± 2 °C в сроки, указанные в нормативном или техническом документе на добавку конкретного вида.

Автором в производственной лаборатории было проведено испытание ряда наиболее распространенных противоморозных добавок по методике для «холодного» бетона и раствора применительно к Белгородскому портландцементу марки CEM I 42,5 N. Испытания проводились при температуре минус 16 ± 2 º ° С. Дозировка вводимых добавок определялась исходя из рекомендаций производителей для данной температуры. По истечении 28 суток в морозильной камере, через 6 часов после оттаивания на воздухе, образцы основных составов испытаны на сжатие. Результаты эксперимента представлены в таблицах 2 и 3.

Из приведенных данных видно, что ни одна испытываемая добавка не обеспечила набора критической прочности при отрицательной температуре в возрасте 28 суток, независимо от состава добавки, ее свойств и вводимого количества. Замерзание бетона в раннем возрасте до достижения им критической прочности влечет невосполнимые потери прочности, увеличение проницаемости и снижение долговечности бетона. Перед замерзанием прочность бетона должна быть равна примерно 50 кгс/см 2 . Для набора критической прочности необходимо обеспечить предварительное выдерживание бетона в нормальных условиях [1].

В таблицах 2 и 3 приведены результаты испытаний образцов основных составов, которые были выдержаны в нормальных условиях в течение 24 часов, а затем помещены в морозильную камеру с заданной отрицательной температурой минус 16 ± 2 º С на 27 суток. Данное время предварительного выдерживания обеспечило набор критической прочности в бетонах большинства составов. Предварительное выдерживание бетона до момента замерзания в течение меньшего времени в большинстве случаев недостаточно для восприятия цементной системой деформаций и структурных нарушений.

При замерзании бетонов с начальной прочностью порядка 15% и выше (от R28) важным фактором является водоцементное отношение, так как оно сильно влияет на интенсивность образования и накопление геля, особенно в первоначальный период твердения бетона. Пористость бетона меняется качественно: капиллярная – особенно опасная при замораживании – значительно уменьшается, а гелевая в той же степени возрастает.

Водосодержание бетона до 180 л/м 3 не влияет существенно на снижение прочности при замораживании, если бетон к моменту замерзания набрал более 30% от R28. Однако, уменьшая водосодержание бетона, мы ограничиваем количество образования льда, благодаря чему уменьшаются деструктивные процессы в бетоне при замерзании, снижаются потери прочности в 28-суточном возрасте [2].

Эффективность действия противоморозных добавок для «теплого» бетона и раствора оценивают сравнением прочности бетонов и растворов основных составов, твердевших по ниже приведенному режиму, с прочностью контрольного состава, твердевшего в нормальных условиях. Образцы основных составов непосредственно после изготовления должны быть помещены на 4 часа в морозильную камеру с заданной отрицательной температурой (соответствующей виду и рекомендуемой дозировке испытываемой добавки). Последующее твердение образцов должно осуществляться в нормальных условиях в течение 28 суток, после чего они должны быть испытаны на сжатие.

В таблице 4 приведены результаты испытаний нескольких составов «теплого» бетона с противоморозными добавками.

Анализ данных таблицы 4 показал, что воздействие низких температур на ранней стадии твердения, даже в течение недлительного времени, отрицательно влияет на формирование структуры цементного камня. Только в одном составе из четырех бетон набрал необходимую прочность в возрасте 28 суток. В остальных случаях введенное количество добавки оказалось недостаточным для защиты смеси от замерзания, интенсификации процесса твердения и набора в дальнейшем необходимой прочности.

Читайте также:
Что сделать из пробок от вина своими руками – лучшие идеи

Выводы

Резюмируя все выше сказанное, необходимо отметить следующие основные аспекты:

При проектировании составов бетона с противоморозными добавками необходимо соблюдать требования ГОСТ 31384-2008 в части ограничений в количестве вводимых добавок и по вещественному составу активных компонентов для обеспечения долговечности конструкций.

Современная технология ведения строительных работ в зимнее время не должна предполагать замерзание бетонных и растворных смесей. Для набора критической прочности необходимо обеспечить предварительное выдерживание бетона в нормальных условиях.

Для решения сложных строительных задач, с целью снижения вероятности ошибок при проектировании состава смеси для «теплого» бетона и раствора, испытания производственных составов смесей необходимо производить в условиях, максимально приближенных к условиям строительной площадки, то есть выдержку в морозильной камере производить при температуре близкой к фактической и в течение планируемого времени, необходимого на доставку смеси и ее укладку в конструкцию. Дальнейшее твердение бетона должно происходить при температуре, которая будет поддерживаться на строительном объекте.

Литература

1. Миронов, С.А., Лагойда, А.В. Бетоны, твердеющие на морозе. – М.: Стройиздат, 1975. – 266 с.

2. Миронов, С.А. Теория и методы зимнего бетонирования. Изд. – 3-е, перераб. и доп. – М.: Стройиздат, 1975. – 700 с.

Назначение, устройство и применение плавких предохранителей

Что такое предохранители и для чего они нужны

Плавкие предохранители, наряду с автоматическими выключателями, применяются для защиты элементов и устройств электрических установок от повреждений, которые могут возникнуть при ненормальных режимах, угрожающих целостности отдельных элементов или всей установки. Обычно плавкие предохранители применяются для защиты кабелей, проводов и электрических устройств сильного и слабого тока от коротких замыканий и более или менее значительных перегрузок.

Сравнительная дешевизна и простота устройства предохранителей обусловили широкое применение во всех тех случаях, когда они пригодны для защиты электрических установок. Однако, будучи простыми по конструкции, предохранители имеют ряд недостатков, обусловливающих их применение в электрических установках с несложными коммутационными схемами и для защиты элементов установок, не предъявляющих высоких требований в отношении защиты от перегрузок.

Основными недостатками предохранителей являются:

трудность, а в ряде случаев невозможность получения избирательного действия их как при коротких замыканиях в сети, так и при перегрузках;

малая пригодность большинства предохранителей для защиты от небольших перегрузок;

необходимость в специальном коммутационном аппарате (рубильнике, разъединителе), поскольку предохранитель, в отличие от автоматических выключателей, может осуществлять только автоматическое отключение при аварийных режимах, являясь в нормальных режимах неуправляемым аппаратом;

необходимость в замене одной из частей предохранителя (плавкой вставки) после его срабатывания.

В настоящее время ведется разработка более совершенных по своим характеристикам предохранителей, позволяющих осуществлять надежную защиту от перегрузок и обладающих более высоким избирательным действием.

Плавкие предохранители обычно классифицируются по следующим признакам:

В настоящее время изготовляется большое количество разных видов предохранителей. Подробнее об этом смотрите здесь: Виды предохранителей

Характеристики

Зависимость общего времени сгорания плавкой вставки и гашения возникающей при этом дуги от кратности тока, плавящего вставку, по отношению к номинальному току вставки предохранителя называется характеристикой предохранителя, или, иначе, амперсекундной (защитной) характеристикой.

Характеристикой предохранителя определяется:

способность защищать элемент установки от перегрузок;

избирательность действия предохранителя в совокупности с действием других предохранителей и релейной защиты схемы, в которой установлен предохранитель.

Подбирая соответствующие амперсекундные характеристики плавких вставок последовательно включенных предохранителей смежных участков сети, добиваются избирательности их действия, т. е. такого действия, при котором вставка нижестоящего по направлению питания предохранителя перегорает раньше, чем успеет перегореть вставка вышестоящего предохранителя.

При подборе плавких вставок предохранителей по условиям избирательности защиты должно соблюдаться также условие, при котором номинальный ток плавкой вставки не превосходил бы величины, определяемой правилами для защищаемого элемента установки.

Важной характеристикой предохранителя является разрывная способность, определяющая максимальную величину отключаемого предохранителем тока короткого замыкания. Разрывная способность предохранителя зависит от быстроты гашения дуги при перегорании плавкой вставки, и при прочих равных условиях она тем больше, чем ниже лежит амперсекундная характеристика плавкой вставки.

Устройство предохранителей

Как указывалось выше, основным назначением предохранителя является защита элементов электрических установок от перегрузок и коротких замыканий. Предохранитель, включенный с защищаемым элементом последовательно, перегорает, когда ток защищаемой цепи превысит на определенную величину номинальный ток плавкой вставки. При этом предохранитель автоматически отключает поврежденный участок сети. На любые другие отклонения от нормального режима работы сети предохранитель не реагирует. Для восстановления питания участка сети при перегорании плавкой вставки необходимо заменить перегоревшую плавкую вставку новой.

Основными частями любого предохранителя являются:

элемент, используемый для размещения (крепления) плавкой вставки и создания условий для гашения дуги при перегорании плавкой вставки;

основание предохранителя в виде стойки или патрона в зависимости от типа предохранителя, с зажимом для подключения к цепи электрического тока.

Основание предохранителя и элемент, используемый для размещения плавкой вставки, снабжаются соответственными контактными устройствами. При помощи контактных устройств элемент закрепляется ив основании предохранителя, а также обеспечивается надежное включение плавкой вставки в защищающую цепь тока.

Некоторые предохранители снабжаются дополнительными устройствами: зажимами для предотвращения выпадания предохранителей при вибрации, ручками для удобного и безопасного извлечения съемного элемента предохранителя из распределительного устройства и т. д.

Монтаж и эксплуатация предохранителей

Трубчатые предохранители должны устанавливаться на вертикальных плоскостях с контактными стойками, установленными строго по вертикали. Категорически воспрещается установка плавких вставок незаводского изготовления или вставок, не предназначающихся для данного типа патрона, во избежание разрыва трубки и перекрытий при срабатывании предохранителя. Номинальный ток плавкой вставки должен соответствовать данным защищаемого элемента установки.

Читайте также:
Стиль кантри в интерьере гостиной — варианты дизайна

При эксплуатации нужно следить за состоянием предохранителей и распределительных устройств, не допуская загрязнения и запыления, чтобы избежать перекрытия между предохранителями равной полярности. Необходимо периодически очищать контактные части предохранителей от окислов. Все операции по извлечению патронов из контактных стоек должны производиться специально предусмотренными приспособлениями (клещами, ручками) при снятом напряжении.

Предохранители рекомендуется устанавливать на вертикальных плоскостях, но допускается установка их на наклонных и горизонтальных плоскостях. Чтобы предотвратить перегрев зажимов предохранителей, необходимо присоединение подводящих проводов выполнять тщательно шинами или проводниками надлежащего сечения. При эксплуатации необходимо постоянно следить за правильностью затяжки плавких вставок, подворачивая при необходимости головку предохранителей. Контактные части предохранителей рекомендуется смазывать чистым техническим вазелином.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Что такое плавкие предохранители и для чего они необходимы?

Защита электрических цепей от КЗ и перегрузок является одной из самых важных задач в электротехнике. С этой целью изобретено множество защитных аппаратов, которые сегодня применяются как в силовых цепях, так и для защиты электрических схем в различных устройствах. Практически в каждом сложном электроприборе можно встретить плавкие предохранители – одноразовые коммутационные устройства, разъединяющие цепь в аварийной ситуации.

Назначение и принцип действия

Основная задача плавких предохранителей – защита электрической сети и электрооборудования от сверхтоков, возникающих при коротком замыкании или в результате критических перегрузок. При этом они обеспечивают бесперебойную работу защищаемых цепей в номинальном режиме.

В отличие от автоматического выключателя, часто применяемого в электротехнике, плавкая вставка срабатывает только один раз, после чего он подлежит замене. Однако срабатывает такое устройство со стопроцентной вероятностью, в то время как автоматика после многократного отключения может подвести. Именно поэтому для защиты дорогостоящего оборудования используют плавкие вставки. Не отказываются от применения этих защитных устройств и в силовых цепях.

Устройство и принцип защиты

В конструкции плавкого предохранителя есть два основных элемента: корпус (держатель) с контактами и плавкую вставку (рисунок 1). Строго говоря, только сочетание этих элементов можно называть предохранителем. Очень часто деталь плавкой вставки (особенно если она заменяемая) называют плавким предохранителем. В данной статье мы тоже иногда будем придерживаться этой традиции.

Рис. 1. Конструкция плавкого предохранителя

Рабочим элементом вставки является проводник из меди или сплава металлов. Благодаря этому плавкому элементу происходят отключения цепи в критических ситуациях.

В качестве плавкого элемента может быть одна или несколько медных проволок, пластина либо фигурная деталь. Эти проводники помещаются в жаропрочный корпус: стеклянный, керамический (рис. 2) или пластиковый. В зависимости от назначения, пространство вокруг плавкого элемента может быть заполнено кварцевым песком или окружено легкоиспаряющимся веществом, предназначенным для гашения электрической дуги.

Рис. 2. Керамические плавкие вставки

При прохождении номинальных токов через проволоку вставки, она незначительно нагревается, не достигая температуры плавления. Но в режиме короткого замыкания резко возрастает величина тока, что приводит к плавлению вставок. Это приводит к разрыву цепи.

Нагревание предохранителя происходит также при перегрузках, то есть в результате превышения номинального напряжения на защищаемом участке цепи. При достижении рабочих напряжений величины, называемой током отключения, температура плавкого элемента возрастает до точки плавления и цепь разрывается. После восстановления параметров цепи плавкую вставку необходимо заменить.

Плавкие вставки имеют некую инерционность срабатывания. При КЗ задержка незаметна, так как в этом случае плавкий элемент нагревается молниеносно.

Иначе обстоит дело в случаях с перегрузками. Для достижения температуры плавления требуется больше времени. Поэтому, чтобы повысить скорость срабатывания, элементам вставок придают специальную форму и нагружают их силами упругости (один конец пластины соединяют с растянутой пружиной).

В некоторых моделях под действием пружины наружу выходит штифт, называемый индикатором срабатывания (рисунок 3). Он выступает в роли указателя срабатывания и свидетельствует о том, что вставку надо менять.

Рис. 3. Строение плавкой вставки

Цифрами на рисунке обозначено:

  • I – патрон;
  • 2 – плавкая пластина;
  • 3 – шарики из олова;
  • 4 – плавкая вставка;
  • 5 – кварцевый песок;
  • 6 – пружина;
  • 7 – текстолитовая шайба;
  • 8 – спусковой механизм указателя срабатывания;
  • 9 – колпачок;
  • 10 – ободок колпачка;
  • 11 – указатель срабатывания;
  • 12 – асбоцементная прокладка;
  • 13 – цементная заливка.

В ряде случаев для увеличения скорости срабатывания используют вставки с параллельно натянутыми проволоками разных диаметров. Перегорание самой тонкой проволоки увеличивает нагрузку на остальные элементы, ускоряя их плавление.

С целью снижения перенапряжений в некоторых конструкциях вставок применяют проволоки с разными сечениями отдельных участков. При срабатывании такого предохранителя, первым перегорает участок с наименьшим сечением вставки. Если пары расплавленного металла спровоцируют в точке разрыва электрическую дугу, то перегорит участок с большим сечением.

Конструктивные особенности предохранителей можно узнать по их маркировке. К сожалению, время-токовые характеристики наносятся не на все типы изделий. Но модели, на которые нанесены буквенно-цифровые коды, можно легко классифицировать по их назначению.

Маркировка

При выборе предохранителей важно знать диапазон защиты. Их всего 2: частичный и полный. При частичной защите предохранитель срабатывает только от токов КЗ. Полная защита включает также срабатывание от перегрузок.

В кодовой маркировке диапазоны защиты обозначены буквами «a» (частичный) и «g» (полный). Эти буквы стоят первыми перед цифрами, обозначающими номинальный ток.

На втором месте проставляются английские прописные буквы, которые обозначают:

  • G — универсальный предохранитель. Применяется для защиты оборудования: трансформаторов, кабелей, электродвигателей;
  • L — для кабелей и распределительных устройств;
  • B — защита горнодобывающего оборудования;
  • F — устройство для маломощных цепей;
  • M — прибор для защиты цепей электромоторов и коммутирующих устройств;
  • R — устройства для защиты полупроводниковых схем;
  • S — моментальное сгорание при КЗ и среднее время срабатывания при перегрузках;
  • Tr —трансформаторные предохранители.
Читайте также:
Элементы мягкой кровли

Иногда на вставках проставляют только значения номинального тока. Такие предохранители применяются для защиты лишь от коротких замыканий.

Миниатюрные плавкие вставки маркируются в соответствии с требованиями ГОСТ Р МЭК 60127-1-2005. Согласно этому стандарту указывается номинальный ток и номинальное напряжение.

Перед показателем величины номинального тока проставляются буквенные символы:

  • FF – сверхбыстродействующие предохранители;
  • F – быстродействующие плавкие вставки;
  • М – полузамедленные;
  • Т – замедленные;
  • ТТ – сверхзамедленные.

Допускается цветная маркировка. Пример такой маркировки показан на рис. 4.

Рис. 4. Цветовая маркировка миниатюрных предохранителей

Виды и устройство

В зависимости от решаемых задач классификация предохранителей может быть следующей (рисунок 5):

  • ножевые предохранители;
  • слаботочные плавкие вставки;
  • вилочные предохранители;
  • кварцевые;
  • пробочного типа
  • газогенерирующие.

Рис. 5. Виды плавких предохранителей

Существуют также самовосстанавливающиеся предохранители, инерционные и откидывающиеся (рис. 6). Изделия инерционного типа предназначены для защиты электромоторов, которые при запуске создают большие нагрузки. Плавкие элементы нагреваются, но не перегорают. После того, как двигатель запустится, инерционный предохранитель переходит в режим ожидания.

Откидывающиеся вставки применяют в защите линий электропередач. В аварийных ситуациях плавкий элемент размыкает цепь. Под действием высокой температуры вставка удлиняется, в результате чего происходит давление на спусковой механизм, который отбрасывает предохранитель из его гнезда. Таким образом, обеспечивается надёжное отключение аварийного участка.

Рис. 6. Откидывающиеся плавкие предохранители

Устройство самовосстанавливающегося предохранителя отличается от других типов электрических аппаратов. Рабочим элементом изделия является полимер с положительным температурным коэффициентом расширения. Полимер содержит углеродистые включения, которые проводят ток.

При нагревании углеродные связи разрываются, в результате чего растёт электрическое сопротивление. При достижении температуры плавления полимера сопротивление стремится к бесконечности, то есть, цепь размыкается. При остывании возобновляется электропроводность полимера. Предохранитель самовосстанавливается.

Технические характеристики

Плавкие вставки идентифицируются двумя характеристиками: номинальным напряжением и величиной номинального тока. В промышленном оборудовании эти показатели могут достигать десятков киловольт и тысяч ампер.

В бытовых приборах применяются плавкие вставки, номинальное напряжение свободных контактах которых составляет:

  • 110, 220 В – для постоянных токов;
  • 220; 380 В – для переменного тока.

На контактах распространённых моделей номинальные токи составляют от 10 до 2500 А, а на концах плавких вставок – от 2 до 2500 А.

Преимущества и недостатки

К достоинствам плавких предохранителей относятся:

    • полная гарантия отключения аварийного участка цепи;
    • стабильность технических характеристик защиты;
    • можно применять для избирательности;
    • быстродействие;
    • безотказность;
    • простота конструкции.

Основные недостатки:

  • в трёхфазных сетях возможен перекос фаз;
  • вероятность длительного горения дуги;
  • влияние окружающей среды (температуры) на характеристики плавких вставок;
  • сложность в настройках селективной защиты;
  • необходимость замены вставки после каждого срабатывания защиты.

Плавкие предохранители их назначение типы и устройство

Плавкие предохранители их назначение типы, виды, устройство важно знать для эффективного пользования электроприборами, это один из видов защитных приспособлений от сверхтоков, коротких замыканий. Вставка предохранителя «жертвует» собой — перегорает, размыкая цепь питания. Начинка защищаемого объекта остается без повреждений и чтобы привести его в рабочее состояние потребуется только заменить проводник. Если прибор вышел из строя, это еще вовсе не означает существенную его поломку — возможно, просто перегорел плавкий предохранитель. Замена элементарная: нужно поместить новую вставку в держатель или впаять новый ПП.

Что такое плавкие предохранители

Для электросети есть несколько защитных устройств, реагирующих на опасные факторы размыканием цепи, ими можно создавать множество ступеней. Традиционно в щитках и на линиях потребителей устанавливается автоматика отключения — АВ, УЗО+АВ, АВДТ, иногда такие устройства смонтированы сразу на шнурах питания (кабельные УЗО, характерно для водонагревателей). Но также есть элементы проще и дешевле — плавкие предохранители, вставки.

Устройство, внешний вид

Плавкий предохранитель — это стеклянная/керамическая/фибровая колбочка (вставка) на концах с металлическими колпачками, коробочка, флажок с проволочиной на платах электроприборов, в ВРУ, пробках. Вставляется в посадочное место (держатель) с металлическими зажимами или наподобие розетки, припаивается. Фактически это проводок, соединяющий цепь, но со специальными параметрами.

Всем известно, что если сечение жил проводки не рассчитанное на мощность включенных электроприборов, то она перегревается и может сгореть, этот же принцип в основе ПП.

Внутри вставки находится проводник (проводок, проволочина, пластина) из металлов и их сплавов (медь, цинк, сталь) обязательно соединенная с цепью через контакты на двух ее концах. В мелких девайсах элемент не превышает размером детали микросхемы. Есть и большие устройства — коробочки со сторонами в несколько см, с толстыми плавкими пластинами внутри рассчитанные на тысячи ампер (ППН-37,41).

Форма может быть и с розеточным подключением наподобие вилки, но принцип тот же. А также есть типоразмеры без посадочного места, то есть цельные, у которых вставка не заменяемая, такой ПП меняется полностью вместе с ней.

Материалы корпуса — композит, керамика, стекло, фибра. Внутри может быть наполнение (кварцевая крошка для гашения электродуги), что характерно для мощных разновидностей ПП.

Как работает плавкий предохранитель

Срабатывание происходит посредством сгорания плавкой вставки: когда величина тока превышает допустимое значение, создается температурное влияние — элемент перегорает, тем самым контакты расцепляются, оборудование обесточивается. Аналогично и при КЗ. Процесс занимает доли секунды. Есть разные размыкающие проводники (более или менее чувствительные) под конкретные температуры, нагрузки.

Читайте также:
Сравнение каркасной технологии строительства дома и сруба

Отличие ПП от автоматов и УЗО: после активации требуется замена вставки или целого элемента. Достоинство в дешевизне и простоте замены: потребуется просто защелкнуть новую вставку, поместить в розетку новый экземпляр, реже — припаять.

Защита ПП основывается на способности металлов перегреваться, когда через них проходит превышающий их пропускную способность ток. При соответствии параметров происходит равномерный нагрев металла — тепло успевает рассеиваться. Когда же значение превышает допустимый уровень — тонкая проволочина, пластина внутри колбы расплавляется и разрушается. Причем это происходит почти моментально.

Для чего применяются плавкие вставки предохранителей:

  • защита от перегрузок (всплески, скачки);
  • от КЗ.

Кроме защиты, сработка ПП укажет на проблемы, поломки, на дефекты оборудования, например, спровоцировавшего КЗ.

Схематическое обозначение

На схемах и чертежах ПП обозначается так:

  • прямоугольник с пересекающей его посередине горизонтальной прямой черточкой. Концы подсоединены к цепи;
  • согласно иностранным стандартам могут использоваться другие графические рисунки:
    • по IEC — прямоугольник с обозначенными сегментами;
    • по IEEE/ANSI — волна.

Описание вариантов плавких вставок и предохранителей

  • с наполнением (ПН-2, ППН, НПН). Внутренняя полость, заполненная материалами, гасящими электродугу, появляющуюся при перегорании. Цепь разомкнута только при исчезновении данного явления. Гасящее вещество — кварцевая пыль;
  • без наполнения (ПР-2). Дугу подавляет газ, выделяемый при срабатывании и нагреве стенок вставки. Слаботочные ПП могут не иметь этой и предыдущей особенности.

  • трубчатые и слаботочные. Первые, это стеклянные, керамические или фибровые цилиндрики с хомутками на торцах. Вторые те же, но чаще со стеклянной колбой, для маломощных бытовых устройств до 6 А. Вставка защелкивается в горизонтальный продольный держатель с зажимными клеммами, его металлические торцы касаются контактов на цилиндрике (хомутков), таким образом, изделие включается в цепь. Такие разновидности обычно ненаполненные, особенно, если они фибровые: этот материал, нагреваясь, выделяет газ для подавления дуги;
  • вилочные. Обычно для автомобильного оснащения, для блоков с ПП на панелях управления. Контакты напоминают вилку, расположены снизу;
  • пробки-предохранители или пробковые плавкие вставки. Стандартно для 63 А. Обслуживают единовременную работу бытовых потребителей. Перегорающая часть скрыта керамикой с патроном, снаружи — 1 контакт, другой — подключен к пробке. ПП выгорает, обесточивая квартиру. Восстанавливают электроснабжение заменой вставки. Такие устройства ставились в домах старой застройки, теперь используются реже, так как есть АВ и УЗО. Остаются актуальными на электростанциях, в промышленности;
  • ножевые. Для 100 — 1250 А, применяются для высоких значений, например, при наличии мощных электродвигателей, в ВРУ;
  • кварцевые, с кварцевой пылью внутри — для значений до 36 кВ;
  • газогенерирующие (с возможностью разборки и без таковой). При горении (вспышке) возникает хлопок и интенсивное газовыделение (модели ПСН, ПВТ). Для 35–110 кВ. Номинал до 100 А

Выбор плавкой вставки и плавкого предохранителя

На выбор влияет:

  • нагрузка на сеть — основной параметр для выбора. Данная определяющая также влияет на то, будет ли ПП с наполнением, на материал его вставки, параметры (толщину, сплав) проводника;
  • типоразмер и способ установки. ПП подбирается под имеющиеся на оснащении посадочное место (вилка, продольная конструкция с клеммами). Монтаж простым вставлением или припаиванием (на микросхемах).

ПП помощнее монтируют в трансформаторных узлах с токами для групп МКД, предприятий. Маломощные — около счетчиков, для защиты отдельных квартир. Слаботочные в виде маленьких колб — в бытовых приборах, на их платах. На данный момент не всегда они актуальные в современной технике, но особая разновидность — интегральные керамические SMD предохранители — есть всегда (их минус — сложность в замене).

Расчет

Для определения подходящих параметров плавкого предохранителя учитывают следующее:

Если в схеме есть электродвигатель, то берут во внимание его пусковой параметр (ток), разделенный на определенный коэффициент:

Правила, как подобрать номинал:

  • уравнение для исчисления: I пп>1/k (I общ.+ I пуск.);
  • номинал должен превышать величину, полученную при исчислениях по току;
  • удобно пользоваться табл. фиксированных данных, этого будет достаточно, так как они отображают точную информацию.

Пример, как рассчитать номинал ПП для квартирной сети: сложить мощность всех потребителей (электроприборов) в Вт (1 кВт это 100 Вт) и посмотреть в таблице, какому значению (А) номинала плавкого предохранителя она соответствует. Желательно добавить запас около 20 %. Если величина находится между конечными цифрами диапазона, то выбирают следующую по возрастанию позицию.

Описанный выше расчет подходит для всех бытовых целей, но для предприятий с оборудованием с мощными пусковыми токами, электродвигателями, для ПП, обслуживающих целые дома, потребуется ознакомиться с диаграммами временно пусковых значений.

Следует сказать, что в щитках современных квартир ПП не используют, в этом просто нет смысла — автоматики защитного отключения (АВ, УЗО, АВДТ) с избытком хватает, и ее опции намного расширенные. Но в домовых ВРУ они есть всегда. Также чаще изделия встречаются в электросхемах, в автомобилях, на станциях, в мощном оборудовании промышленности. Стандартно они присутствуют на панелях управления (сигнализация, устройства с реле и подобное).

Исчисление диаметра проволоки (пластины вставки, проводника)

Расчет диаметра проводника ПП и его замена делается редко, но это возможно: когда нет нового элемента (вставки) на место перегоревшего старого и когда конструкция изделия позволяет вставить пластину или проволочину.

Сечение проводка «жучка» подбирается под номинал сгоревшей вставки. Для квартир стандартно монтируют ПП на 63 А, подойдет медь ∅ 0.9 мм.

  1. Смотрят номинал ПП (корпус, документация).
  2. Измеряют ∅ проводка (цифровым штангенциркулем).
  3. Возводят результат в куб и из полученного извлекают кв. корень, умножают на 80.
  4. Итог: получаем цифру равную номиналу ПП. Результат приблизительный, но максимально приближенный до точного.
Читайте также:
Электрохимическая полировка в домашних условиях

Подобранную проволоку наматывают на контакты (выводы) сгоревшей вставки соединяя их, продолжая цепь. «Жучок» помещают в гнездо предохранителя, размещают между зажимами на торцах или вставляют как вилку.

Повторное плавление жилы означает неполадку в защищаемом объекте или сети (значение тока выше их возможностей). Есть риск: если подобрана проволока толще, то она не среагирует на поломку. То есть неисправность не диагностируется, обслуживаемый объект будет продолжать работу с перегрузками, что приведет к выходу его из строя, это также чревато возгоранием, ударами тока.

Как проверить работоспособность

Главное — определить, есть ли разрыв. Некоторые типы плавких предохранителей (часто автомобильные) оснащены встроенным индикатором перегорания. В слаботочных вариантах через стеклянную колбу видно проволоку (если разорвана, то изделие не рабочее).

Есть варианты ПП с непрозрачными вставками, корпусами из полимеров, фибры, керамики и без индикаторов. Диагностировать обрыв можно мультиметром:

  1. Режимом измерения сопротивления (на шкале буква «омега», выбрать миним. значение). Щупы — к контактам: при «0» или близким к нему показателях — работоспособность; 1 или знак бесконечности — вставка сгорела, есть разрыв.
  2. Режим прозвонки: нуль (близко к нулю) или цифры — работоспособность, если есть опция зуммера, то тестер издаст писк; 1 — обрыв.

Видео по теме

Устройство плавкого предохранителя

Плавкий предохранитель необходим для того, чтобы обеспечить безопасность и защиту различным элекроцепям, от возможно возникших в них замыканий или опасных перегрузок. Такие предохранители очень дешевые, так как имеют самую простейшую конструкцию своего строения. Также они являются самыми популярными защитными устройствами, придуманные для защиты электрооборудования.

Он состоит из корпуса, обычно из металла или керамики и проволоки из плавкого металла. Ее выводы соединены с контактами, то есть имеет последовательное включение в электроцепь. При возрастании тока до критического уровня, проволока расплавляется, тем самым размыкая цепь. В статье будет рассмотрено устройство этих предохранителей и как их использовать на практике. В качестве бонуса, статья содержит несколько видеороликов и одну подробную статью по электротехнике.

Два основных типа

В теории и практике плавкие предохранители разделяются на два основных типа. Такое деление происходит по величине напряжения рабочей сети, для которой предназначен предохранитель. Разделяют низковольтные и плавкие высоковольтные предохранители. Низковольтные предохранители рассчитаны на напряжение до 1000 Вольт. Маркируются плавкие низковольтные предохранители, как ПН или ПР. Материал плавких вставок предохранителей представлен в таблице ниже.

Применение предохранителей ПН и ПР

Предохранители ПН и ПР предназначены для защиты кабельных и воздушных линий электропередач и защиты электрических машин. Устанавливаются предохранители во вводных, вводно-распределительных щитах, в различных сборках. С помощью предохранителей защищаются силовые трансформаторы со стороны высокого напряжения. В быту вы сталкивались с плавкими предохранителями этого типа, если делали электрику своими руками в доме или на даче.

В зависимости от мощности потребления, на вводе электропитания в дом, ставится вводной щит с плавкими предохранителями. Уже после вводного щита, устанавливается распределительный щит для разделения электропроводки на группы и защитой групп розеток и групп освещения автоматами защиты.

Устройство предохранителей

Основой предохранителя является так называемая плавкая вставка. Именно она перегорает при перегрузке или коротком замыкании. Для погашения дуги, образующейся при перегорании вставки, вставку окружают дугогасящим приспособлением. В предохранители ПН это камера с мелкозернистым кварцевым песком. В предохранители ПР это фибровый трубчатый патрон.

Плавкий предохранитель представляет собой однополюсный коммутационный аппарат, предназначенный для защиты электрических цепей от сверхтоков; действие его основано на плавлении током металлической вставки небольшого сечения и гашении образовавшейся дуги.

Предохранители пробочного типа

Отдельно хочется остановиться на предохранителях пробочного типа. Вы их могли встречать, в старых, да и не очень старых, квартирах и домах. По конструкции это стационарно установленный патрон, в который вворачивается плавкий предохранитель с цоколем. При аварийной ситуации пробка перегорает. В современном исполнении пробка может быть с кнопкой, которая является аналогом выключателя. После аварии, кнопка взводит предохранитель в рабочее положение.

Подключение пробочного предохранителя

В подключении пробочного предохранителя своими руками нет ничего сложного. У предохранителя две клеммы. На вводную клемму подключается фазный провод питания, на вторую фазный провод подающий питание в квартиру или дом.

Номиналы устройства

Номиналы плавких предохранителей выбираются по наименьшим расчетным токам электросети или отдельных электрических цепей. Если вы меняете плавкие предохранители на автоматические выключатели (АВ), то номинал АВ должен быть на шаг больше номинала предохранителя. Все плавкие предохранители, должны быть подписаны с указанием их номиналов и назначения.

Классификация аппаратов

Плавкий предохранитель представляет собой однополюсный коммутационный аппарат, предназначенный для защиты электрических цепей от сверхтоков; действие его основано на плавлении током металлической вставки небольшого сечения и гашении образовавшейся дуги. Ценными свойствами плавких предохранителей являются:

  • простота устройства и, следовательно, низкая стоимость;
  • исключительно быстрое отключение цепи при КЗ;
  • способность предохранителей некоторых типов ограничивать ток КЗ.
  • Следует, однако, указать, что:
  • характеристики предохранителей таковы, что они не могут быть использованы для защиты цепей при перегрузках;
  • избирательность отключения участков цепи при защите ее предохранителями может быть обеспечена только в радиальных сетях;
  • автоматическое повторное включение цепи после ее отключения предохранителем возможно только при применении предохранителей многократного действия более сложной конструкции;
  • отключение цепей плавкими предохранителями связано обычно с перенапряжениями;
  • возможны однополюсные отключения и последующая ненормальная работа участков системы.

Поэтому в электроустановках свыше 1 кВ предохранители имеют ограниченное применение; их используют в основном для защиты силовых трансформаторов, измерительных трансформаторов напряжения и статических конденсаторов. Плавкий предохранитель состоит из следующих основных частей: изолирующего основания или металлического основания с изоляторами, контактной системы с зажимами для присоединения проводников, патрона с плавкой вставкой. Большинство предохранителей имеет указатели срабатывания той или иной конструкции.

Читайте также:
Установка капельника на крыше своими руками

Предохранители характеризуют номинальным напряжением, номинальным током и номинальным током отключения. Следует различать номинальный ток плавкой вставки и номинальный ток предохранителя (контактной системы и патрона). Последний равен номинальному току наибольшей из предназначенных к нему вставок. Для предохранителей переменного тока с номинальным напряжением от 3 до 220 кВ включительно установлены следующие значения номинальных токов:

  • Номинальные токи предохранителей, А……8; 10; 20; 32; 40; 50; 80; 160; 200; 320; 400
  • Номинальные токи плавких вставок, А……2; 3,2; 5; 8; 10; 16; 20; 32; 40; 50; 80; 160; 200; 320; 400
  • Номинальные токи отключения, кА……2,5; 3,2; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40

Под номинальным током отключения следует понимать наибольшее допускаемое действующее значение периодической составляющей тока КЗ, отключаемого предохранителем при определенных условиях. Отечественные аппаратные заводы выпускают плавкие предохранители для напряжений до 110 кВ включительно. Наибольшая температура частей предохранителя, заряженного любой из предназначенных для него плавких вставок, не должна превышать значений, указанных в табл.1 при температуре воздуха +40°С.

Расчет мощности

Плавкая вставка выбирается с таким расчетом, чтобы она плавилась раньше, чем температура проводов линии достигнет опасного уровня или перегруженный потребитель выйдет из строя. По конструктивным особенностям различают пластинчатые, патронные, трубочные и пробочные предохранители. Сила тока, на который рассчитана плавкая вставка, указывается на ее корпусе. Оговаривается также максимально допустимое напряжение, при котором может использоваться предохранитель.

Данная кривая снимается экспериментально: берется партия одинаковых предохранителей, которые последовательно пережигаются при разных токах. Замеряются время, по истечении которого вставка перегорает, и ток, проходящий через вставку. Каждому току соответствует определенное время перегорания вставки. По этим данным и строится временная характеристика.

Наверное, все из нас видели керамические «пробки», которые заворачиваются в щиток электросчётчика. До недавнего времени, а иногда и сейчас они ещё служат в качестве устройств защиты. По личному опыту – неоднократно сталкивался с такой схемой включения – в щитке две пробки, одна стоит в фазном проводе, вторая – в нулевом. Но какая схема включения категорически неправильна! Ни в коем случае нельзя включать предохранитель в нулевой провод. Ведь что происходит, если именно он выйдет из строя – цепь разоврётся и будет защищена, но потребители всё равно будут под потенциалом сети – фаза-то присутствует. А это уже вопросы электробезопасности.

Несмотря на то, что плавкие предохранители отслужили свой срок и морально устарели в качестве устройств защиты во вводах бытового сектора, на протяжении всего времени существования они достойно выполняли данную функцию. Плавкие предохранители, конечно справляются со своими функциями защиты от превышения потребляемого тока или короткого замыкания. Однако, на сегодняшний день, особенно в бытовом секторе, плавкие вставки становятся раритетом.

Плюс ко всему – это довольно опасные в пожарном плане устройства. Ведь сегодня многие считают себя электриками и при перегорании «пробки» некоторые «специалисты» устанавливают «жучки» из некалиброванной проволоки. Причём, иногда, довольно экзотические. Характерный пример я описывал в предыдущем обзоре. А чем всё это чревато – далеко ходить не нужно – посмотрите хронику ЧП по любому телеканалу. Поэтому вполне закономерно, что на смену плавким вставкам пришли более надёжные устройства – автоматические выключатели.

Кварцевые предохранители

Кварцевые предохранители изготовляют для напряжений 6, 10 и 35 кВ для внутренней и наружной установки. Они относятся к группе токоограничивающих предохранителей. Патрон предохранителя типа ПКТ для напряжений 3-35 кВ (рис.4) представляет собой фарфоровую или стеклянную трубку 1, плотно закрытую металлическими колпачками 2. Внутри трубки помещена плавкая вставка 3 в виде одной или нескольких параллельно включенных тонких медных проволок. В нижнем колпачке предусмотрен указатель срабатывания предохранителя 4. Патрон заполнен мелким кварцевым песком.

Длина проволок и, следовательно, длина патрона определяются номинальным напряжением. Поскольку градиент восстанавливающейся электрической прочности промежутка в кварцевом песке относительно невелик, длина проволоки должна быть велика. Чтобы поместить ее в патроне, приходится навивать проволоку винтообразно.

Характеристики тугоплавких вставок из меди (температура плавления 1080°С) могут быть улучшены напайкой капель олова или свинца, температура плавления которых значительно ниже (соответственно 200 и 327°С). При расплавлении металла напайки он растворяет в себе медь, вследствие чего вставка быстро разрушается при температуре значительно более низкой, чем температура плавления основного материала вставки.

Свойства материала, наполняющего патрон токоограничивающего предохранителя, существенно влияет на работу последнего. Наполнитель должен удовлетворять следующим требованиям:

  • отводить тепло от плавкой вставки в нормальном рабочем режиме;
  • не выделять газа под действием высокой температуры дуги;
  • обладать достаточной электрической прочностью после разрыва цепи.

Как показал опыт, этим требованиям в наибольшей мере отвечает кварцевый песок. Процесс отключения цепи токоограничивающим предохранителем при КЗ протекает следующим образом. При большом токе тонкая проволока плавится и испаряется в течение долей полупериода почти одновременно по всей длине. Зажигается дуга. Вследствие высокой температуры газа в канале дуги образуется местное давление (давление в патроне практически не повышается). Ионизованные частички металла выбрасываются в радиальном направлении в зазоры между песчинками кварца. Здесь они быстро охлаждаются и деионизуются.

Как видно из осциллограммы, напряжение у зажимов предохранителя превышает напряжение сети вследствие появления ЭДС самоиндукции, направленной согласно с напряжением сети. Коммутационные перенапряжения, возникающие при отключении цепи плавкими предохранителями, не должны превышать следующих значений:

Читайте также:
Тумба с сиденьем в прихожую (45 фото): узкая тумбочка или комод для обуви, варианты с мягким сиденьем в коридор, модели под телефон

Номинальное напряжение, кВ……3..6..10..20..35

Наибольшее допустимое перенапряжение по отношению к земле, кВ……16..26..40..82..126

Для ограничения перенапряжения принимают различные меры: применяют вставки ступенчатого сечения по длине, что затягивает процесс их плавления и удлинения дуги; параллельно основным рабочим вставкам включают вспомогательные вставки с искровым промежутком. В последнем случае при расплавлении рабочих вставок и резком повышении напряжения пробивается искровой промежуток вспомогательной вставки, которая также сгорает. Максимальное напряжение при этом уменьшается.

Плавкие предохранители — их назначение, типы и виды, устройство и принцип действия

Плавкий предохранитель — элемент электросети, выполняющий защитную функцию. В отличие от автоматического выключателя после каждого срабатывания он нуждается в замене размыкающей цепь детали. Плавкая вставка, которая сгорает при превышении допустимого значения номинального тока, должна быть выбрана с учетом нагрузки на сеть.

Принцип работы и назначение плавких предохранителей

Внутри вставки предохранителя находится проводник из чистого металла (меди, цинка и пр.) или сплава (стали). Защита цепей основана на физическом свойстве металлов нагреваться при прохождении тока. Многие сплавы обладают и положительным коэффициентом термического сопротивления. Его эффект заключается в следующем:

  • когда ток ниже номинального значения, предусмотренного для проводника, металл равномерно нагревается, успевая рассеивать тепло, и не перегревается;
  • большая сила тока приведёт к нагреву проводника, при этом, рассчитанный на определённое значение силы тока предохранитель, разрушится.

На этом свойстве основана расплавление тонкой проволочины, помещенной в электрический предохранитель. В зависимости от сферы применения форма и сечение проводника могут быть разными: от тонкой проволоки в бытовых и автомобильных приборах до толстых пластин, рассчитанных на силу тока в несколько тысяч ампер (А).

Компактная деталь защищает электрическую цепь от перегрузки и короткого замыкания. При превышении допустимого для сети (т. е. номинального) тока происходит разрушение вставки и разрыв цепи. Восстановить её работу можно только после замены элемента. Когда есть дефект в подключенном оборудовании, предохранители сгорают сразу после включения неисправного прибора, позволяя сохранить целостность прибора и указать на наличие проблемы. Если в сети произошло короткое замыкание, защитное устройство срабатывает так же.

Условное графическое обозначение на схеме

Согласно Единой системе конструкторской документации России, на графических схемах электроцепей плавкие предохранители обозначают прямоугольником, внутри которого проходит прямая линия. Её концы соединяются с 2 частями цепи до и после защитного устройства.

В документации к приборам импортного производства можно встретить и другие обозначения:

  • прямоугольник с отделёнными частями в торцах (стандарт IEC);
  • волнистая линия (IEEE/ANSI).

Виды и типы плавких предохранителей

Для применения в электроцепях используют разные типы и разновидности ПП. Выпускаемые в России изделия отличаются по типу конструкции:

  • наполненные с маркировкой ПН-2; ППН, НПН и т. п.;
  • ненаполненные (ПР-2).

Понятие наполненности связано с наличием внутри отдельных видов вставок вещества, гасящего электродугу, возникающую в момент перегорания проводника. Цепь будет разомкнута только после её исчезновения. Поэтому в колбах, наполненных ПП, находится кварцевый песок. Ненаполненные способны выделять газы, гасящие дугу. Это происходит при нагреве материала корпуса вставки.

Кроме типов, различают виды ПП:

  1. Слаботочные применяют в маломощных бытовых приборах с потребляемым током силой до 6 А. Это цилиндрические вставки с контактами на торцах.
  2. Вилочные ПП часто ставят в автомобили. Название обусловлено внешним видом: контакты находятся на одной стороне корпуса и вставляются в разъемы, как вилка в розетку.
  3. Пробковые — распространенные в однофазных сетях электрические пробки для счетчика. Номинальный ток таких вставок составляет 63 А, они рассчитаны на единовременное включение нескольких бытовых приборов. Перегорающая вставка в таком предохранителе находится внутри керамического корпуса с патроном, снаружи остается 1 контакт, а другой соединяется с контактами пробки. При превышении нагрузки деталь сгорает, полностью обесточивая квартиру. Восстановить электроснабжение можно, заменив вставку на новую.
  4. Трубчатый ПП по строению напоминает вставку для пробок, но его крепление выполнено между 2 контактами. Тип такого предохранителя — ненаполненный, а корпус сделан из фибры, которая при сильном нагреве выделяет газ.
  5. Ножевые предохранители рассчитаны на величину тока 100-1250 А и применяются в сетях, где нужна высокая нагрузка (например, при подключении прибора с мощным двигателем).
  6. Кварцевые , с наполнением кварцевым песком, применяются в сетях с напряжением до 36 кВ.
  7. Газогенерирующие, разборные и неразборные. При сгорании разновидностей ПСН, ПВТ происходит мощное выделение газа, сопровождающееся хлопком. ПП применяют для сетей с напряжением 35-110 кВ. Номинальный ток такого ПП — до 100А.

В зависимости от общей нагрузки на сеть устанавливают разные виды ПП — более мощные ставят в специальных трансформаторных будках, они могут выдерживать ток, обеспечивающий потребности жилого массива иди предприятия. Маломощные монтируют в счетчиках: они защищают отдельные квартиры. В старых бытовых приборах тоже может быть установлен ПП (слаботочный), но современная техника содержит эти элементы редко.

Выбор плавкой вставки предохранителя

Выбор предохранителей производят с учетом их номиналов, времятоковой характеристики и общей нагрузки на сеть (суммарной мощности всех работающих элементов). Номинальным током ПП называют тот, который плавкая вставка сможет выдержать до разрушения. Эта величина указана на корпусе предохранителя (например, маркировка 63 А для пробковых бытовых предохранителей).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: