Электрохимическая полировка в домашних условиях

Технология электрохимической полировки металла

Электрохимическая полировка изделий. Технологический процесс электроплазменной, электролитической и химобработки металл для придания блеска изделию.

Электрохимическая полировка – это процесс обработки поверхности детали путем погружения ее в кислотный раствор. Металлическое изделие подключается к положительно заряженному аноду, и через электролит пропускается ток с напряжением 10–20 В. В результате металл покрывается оксидной или гидроксидной пленкой, под которой происходит полировка путем сглаживания выступающих микронеровностей. Примерно такой же эффект дает химполировка, но здесь заготовки не подвергаются влиянию электрического тока.

Качество работы зависит от однородности материала. Полирование чистых металлов приводит к получению гладкого блестящего изделия. Полировка сложных сплавов не дает такого результата. По окончании работы обработанная поверхность повышает свою чистоту шероховатости на 2 класса.

Полирование деталей ведется только после их визуального осмотра. Не допускается наличие на них глубоких царапин или раковин, поскольку такие дефекты не устраняются в процессе полировки. Оптимальным вариантом является работа с цилиндрическими деталями. Плоские заготовки хуже поддаются полировке.

По окончании процедуры изделия приобретают ряд положительных качеств: у них увеличивается коррозионная стойкость, повышается прочность поверхностного слоя и понижается коэффициент трения.

Технология электрохимического полирования металла

При электрополировке металла его поверхность становится блестящей. Технологический процесс состоит из ряда операций:

  1. Предварительно заготовка подвергается механической обработке с целью доведения шероховатости поверхности до 6–7 класса.
  2. Промывка для удаления грязи.
  3. Обезжиривание.
  4. Подсоединение к положительно заряженному электроду.
  5. Электрохимическое полирование.
  6. Промывка в щелочной среде с целью устранения кислотных остатков.
  7. Сушка. Для этого используется горячий воздух или опилки.
  8. Выдержка деталей в горячем масле, подогретом до температуры 120 °C.

При полировке происходит устранение неровностей с поверхности детали. Поэтому любой процесс сопровождается:

  1. Макрополированием. При этом идет растворение крупных выступающих вершин.
  2. Микрополированием. Сглаживаются мелкие неровности.

Погружаемое в электролит изделие покрывается оксидной пленкой, которая является защитной средой между металлом и электролитом. В продолжение всего процесса она постоянно растворяется и образуется вновь. Правильность технологического процесса заключается в том, чтобы ее толщина оставалась стабильной.

Непосредственно под пленкой происходит полировка металла. Осуществляется она за счет обмена электронами и ионами между анодом и электролитом. Толщина формируемой пленки всегда меньше на выступающих частях вершин неровностей. Именно здесь и происходит усиленное растворение металла. В углублениях слой пленки толще, и здесь обмен заряженных частиц уменьшенный.

Существуют другие факторы, влияющие на скорость полирования поверхности:

  • ­ перемешивание электролита;
  • ­ повышение его температуры;
  • ­ увеличение силы тока и напряжения.

Все эти факторы уменьшают поверхностный слой, что ускоряет полировку.

Для каждого изделия существует свой временной режим. В зависимости от продолжительности процедуры пропорционально увеличивается снимаемый слой металла. Этого не следует допускать, потому что шероховатость поверхности, выйдя на свой уровень, остается неизменной. Происходит ненужное растворение слоя изделия, что не оказывает влияния на качество поверхности.

Электролитно-плазменное полирование

Важным условием является поддержание высокой температуры химической среды. Она необходима для создания условий пленочного кипения. Однако и превышать верхний предел нельзя. Например, для низкоуглеродистой стали интервал температур составляет 70–90 °C. За пределами этого интервала снижается качество полировки.

Отличия электрополирования от химического

При химическом полировании изделие опускается в емкость с химическим раствором кислоты или щелочи. Здесь происходит растворение поверхностного слоя. Это сопровождается бурным кипением содержимого сосуда. Деталь приобретает нужную шероховатость за несколько секунд. В отличие от электрополирования такой метод менее затратный. Здесь не требуется сложного оборудования. Но присутствуют и недостатки:

  1. Сложность контроля над протеканием процесса.
  2. Без применения электрического тока качество получаемого изделия ниже. У него отсутствует блеск. Поэтому такому способу обработки больше подвергаются изделия из цветного металла, имеющие сложную конфигурацию, которым не предъявляется высоких требований.

Применяемое оборудование и материалы

В качестве оборудования для электрополировки применяются ванны. Технология схожа с хромированием деталей.

  1. Наружный корпус.
  2. Внутренний корпус.
  3. Внутренняя часть ванны облицовывается термостойким материалом, способным противостоять химической среде. Применяется эмаль марки ЛК-1, фарфор, жаростойкое стекло, керамика.
  4. Электронагреватели.
  5. Между корпусами располагается водяная рубашка. Она необходима для регулировки температуры. На первой стадии подготовки электролита он нагревается до 120 °C. Рабочая же температура составляет 70–80 °C.
  6. Подключаются трансформаторы с выпрямителями. С их помощью идет регулирование подачи электрического тока.

Ведется подбор электролита, который должен отвечать следующим характеристикам:

  • ­ безопасностью в процессе применения;
  • ­ хорошей способностью для качественного сглаживания поверхности металла;
  • ­ длительностью работы;
  • ­ возможностью полировки разных металлов.

Исследования показали, что оптимальным составом является смесь фосфорной кислоты, серной и хромового ангидрида. Использование такого электролита позволяет вести полировку сталей как инструментальных, так и легированных. Обработке поддаются медь, алюминий, а также нержавейка.

Присутствие кислот позволяет вести контроль над плотностью электрического тока. Фосфорное соединение его понижает, а серная кислота повышает. За счет правильного формирования концентрации смеси можно оптимально наладить проведение процесса полирования.

Остались вопросы? Обязательно задайте их в комментариях к статье!

Электрохимическая полировка стали

Электрохимическая полировка – процедура обработки поверхности заготовки при помощи ее погружения в раствор кислоты под действием электрического тока. Она сглаживает поверхность детали и позволяет производить полирование металлов без использования лакокрасочных покрытий. В результате взаимодействия химических компонентов и электрических зарядов запускаются реакции, придающие изделию зеркальный блеск.

Описание метода

В основе процедуры электрохимического полирования лежит анодное растворение поверхности обрабатываемой заготовки. Во время этого процесса происходит быстрое растворение выступов на поверхности с шероховатым рельефом. Во впадинах детали происходит растворение в замедленном режиме. Шероховатая сторона становится гладкой из-за несбалансированной скорости растворения, что приводит к появлению дополнительного блеска.

Процесс электрохимической полировки детали происходит в несколько этапов:

  1. Изготовление электролитических ванн, предназначенных для полирования поверхности изделия. В их состав входят универсальные электролиты: ортофосфорная кислота, серная кислота, хромовый ангидрид и вода. При полировке изделий, произведенных из нержавеющей стали, дополнительно используется глицерин. Создание ванн происходит при температуре до 90° C, анодной плотности тока до 80 а/дм 2 и напряжении до 8 В. Электролитические ванны, нагретые до высоких температур, представляют опасность для здоровья человека. При попадании растворов на кожные покровы высок риск образования химических ожогов.
  2. Подготовка заготовки к обработке. Изделия не должны иметь на своей поверхности глубокие рисунки и крупные царапины, не подлежащие электрохимической полировке. Важно, чтобы деталь была произведена из мягких металлов. Данный параметр оказывает влияние на степень эффективно полирования. Чем тверже металл, тем труднее достичь однородной поверхности при сглаживании шероховатых сторон заготовки.
  3. Взаимодействие детали с растворами электролитов. В этом случае металлическая заготовка выступает в качестве анода – электрода с положительным зарядом, а электролитическая ванна – в роли катода. Время выдержки изделия в растворе зависит от типа материала. Заготовки из алюминия выдерживаются в течение 2 – 3 мин, литые детали из нержавеющей стали – до 30 мин. В результате реакции осуществляется постепенное сглаживание шероховатостей из-за появления гидроксидной или оксидной пленки. Полирование происходит за счет обмена частиц между анодом и электролитом. После завершения электрохимической полировки поверхность заготовки становится однородной и приобретает зеркальный блеск.
Читайте также:
Стеклянные перегородки из блоков для ванной комнаты и душевой: дизайн

Теоретически механизм электрохимической полировки объясняется гипотезой вязкой пленки. В соответствии с гипотезой, полирование детали осуществляется после образования поверхности анода в результате растворения частиц вязкой пленки, в состав которой входят продукты анодного растворения. Пленочная поверхность обладает высокими показателями сопротивления, толщина которой различается на впадинах и выступах заготовки. Из-за разницы величины сопротивления вязкой пленки и способности тока собираться на остриях, на разных участках изделия изменяется скорость растворения шероховатостей. В результате шероховатая сторона полностью сглаживается и приобретает однородную поверхность.

Электрохимическую полировку деталей возможно проводить в домашних условиях. Для этого необходимо приобрести оборудование с валом электромотора и кругами для шлифования или создать электролитическую ванну и изготовить химический раствор из соответствующих веществ.

Если деталь имеет множество больших дефектов, то перед началом электрохимической полировки она подвергается механической обработке при помощи шлифовальной машины с вращающимися кругами.

После завершения этого процесса заготовка помещается в щелочной раствор и подсоединяется к заряженному электроду. Процедура электрохимической полировки включает в себя макрополирование: растворение выступающих вершин большого размера, и микрополирование: сглаживание маленьких поверхностей изделия.

Процесс полировки может быть ускорен при следующих условиях:

  • толщина обрабатываемой пленки одинакова на всей поверхности детали;
  • перемешивание и повышение температуры электролитов;
  • наличие комплексных солей или солей слабодиссоциирующих кислот в составе электролитов;
  • увеличение значений напряжения и силы тока.

Эти факторы уменьшают величину поверхностного слоя заготовки, что позволяет производить процедуру полировки за меньший промежуток времени.

Оборудование и материалы

Для электрополировки металла необходимы источники постоянного тока с низкими показателями напряжения и инструменты, для настройки электрического режима. Электролитические ванны должны быть оборудованы нагревателями, поддерживающими температуру химического раствора. Они помещаются в прочную оболочку, располагающуюся на внутренней поверхности ванны, облицованной химическими и теплостойкими материалами.

Для соблюдения техники безопасности в лабораториях для облицовки внутренних конструкций электролитической ванны применяют стеклянные, фарфоровые и керамические материалы. В лабораторных условиях источником тока являются выпрямители, изготовленные из селена или германия. В зависимости от требуемого напряжения возможна установка нескольких выпрямителей.

Для полирования стальных заготовок требуется регулировочное оборудование. Для настройки величины тока в промышленных условиях применяют первичную обмотку трансформатора, соединенного с выпрямителями. С его помощью осуществляется бесступенчатое регулирование тока посредством изменения значений напряжения.

Электрохимическая полировка металлов проводится с применением электролитов, составленных на основе серной, фосфорной и хромовой кислот. Дополнительно добавляется глицерин, увеличивающий суммарную вязкость раствора. Смешивать все электролиты необходимо в правильной пропорции. В следующей таблице представлены соотношения кислот для полирования деталей, изготовленных из разных типов металлов:

Большинство металлов полируется в фосфорносернохромовом электролите, удовлетворяющем следующим условиям:

  • высокие показатели растворимости, что способствует лучшему сглаживанию поверхности полируемой детали;
  • длительный срок эксплуатации раствора;
  • универсальность электролита;
  • безопасен для жизни и здоровья человека.

Важным показателем электролита является его температура. Чем выше этот показатель, тем интенсивнее происходит процесс полирования. Для всех электролитов предусмотрены пределы температур. Если резко понизить данный параметр во время проведения электрохимической полировки, то вязкая пленка уплотнится, что приведет замедлению растворения анодов. В результате полируемая поверхность изделия становится матовой и не приобретает зеркальный блеск.

На равномерность электрохимической полировки оказывает влияние дистанция между электродами в электролите. Оптимальное растворение происходит при расстоянии до 40 мм. При дальнейшем увеличении данного показателя удаляемый слой становится неравномерным. В итоге поверхность детали покрывается темным налетом и становится более хрупкой.

После завершения процесса электрохимической полировки требуются приспособления для очистки электролитической ванны и остального полировочного оборудования. Для этого используются растворители и щелочные средства. В их состав входят активные действующими веществами, очищающими поверхность инструментов полировки от различных видов грязи.

Область применения

Технологию электрохимического полирования активно применяют в промышленности: для обработки деталей арматуры, элементов карбюратора (клапанов для подачи топлива, выполненных из нержавейки), тонких лент, проволок и трубных механизмов. В результате полирования поверхность этих деталей приобретает устойчивость к коррозии и становится более гладкой.

Электрохимическое полирование алюминия и нержавеющей стали применяется в отраслях по производству строительных приспособлений, сверл и крепежных механизмов.

В нынешнее время эта технология активно используется для снятия дефектного слоя с режущих инструментов, использующихся для проделывания отверстий. Электрохимическое полирование вольфрама стало активно внедряться в производстве электронных ламп и электровакуумной техники.

Использование технологии электрохимической полировки практикуется при металлографических исследованиях для диагностики сталей. При помощи этой технологии выявляются трещины, флокены и иные несоответствия в структуре металлов. При обнаружении нарушений производится полировка, удаляющая самые тонкие деформации.

Преимущества и недостатки

Электрохимическая полировка обладает следующими достоинствами:

  1. Она увеличивает прочность стали и препятствует появлению ржавчине на поверхности металла. Этот вид полировки облегчает процедуру вытяжки и штамповки.
  2. Она способна смягчать поверхность сложных и утонченных деталей, имеющих дополнительные отверстия или полости с комплексных рисунком.
  3. Электрохимическая полировка позволяет снизить время полирования поверхности заготовки.
  4. Благодаря высокой производительности данного вида полирования, во время обработки металла не нарушаются основные конструкции изделия.
  5. Ускоряет процедуру производства шлифов.

Несмотря на большое количество преимуществ, электрохимическая полировка обладает несколькими недостатками:

  1. Сложность полирования, обусловленная необходимостью приготовления индивидуального раствора для обработки деталей из разных сталей и регулирования величины подаваемого тока.
  2. В ней применяются элементы электрополирования, что приводит к повышенному расходу электроэнергии.
  3. Электрохимическая полировка не способна выровнять поверхность заготовки с большими трещинами или впадинами.
  4. Как при химполировке, человеку необходимо производить работу с ядовитыми веществами, наносящими вред организму.
  5. Электрохимическая полировка не требует больших финансовых трат, в отличие от механического полирования, что обусловлено покупкой множества химических растворов и перманентной подачей электричества. Электролит обладает низким сроком эксплуатации, поэтому его необходимо периодически обновлять, что приводит к дополнительных денежным расходам.

Чтобы эффективно использовать технологию электрохимической полировки, нужно соблюдать технику безопасности: работать в спецодежде, правильно настраивать техническое оборудование и осуществлять полировку только с исправными приборами.

Электрохимическая полировка — описание, применение, материалы

Полироль для нержавеющей стали помогает нам обновить поверхность и очень быстро сделать ее блестящей простым механическим способом. Но это не всегда эффективно. Какие методы более действенные и насколько они доступны для бытового применения?

Читайте также:
Эксплуатируемая крыша, как продумать проект дома, фотографии +видео

Предназначение полировки

Детали из металла имеют изначально гладкую блестящую поверхность. Но она со временем тускнеет и в процессе эксплуатации царапается. Для скрытых деталей, безусловно, внешний вид не имеет большого значения, но когда металлические детали располагаются на виду, то они должны выглядеть должным образом. Именно так будет смотреться глянцевая поверхность, после того, как вы провели полировку металла.

Полирование металлов предназначается также для улучшения гладкости и чистоты поверхности металлических деталей и устранения следов прошлых обработок – неровностей, царапин и вмятин. Полировку деталей проводят с помощью наждачных кругов, шлифовального порошка, специальной известковой пасты, полировочного раствора или электролита.

Поверхности металлических деталей отделывают не только с целью придания им привлекательного внешнего вида, но и чтобы защитить от ржавления, разъедания щелочами и кислотами. Хорошо полировке поддаются такие металлы, как латунь, бронза и медь. Нержавейку до зеркального блеска не получится довести, а вот придать ей матовый глянец – запросто.

Исходя из вышесказанного, можно утверждать, что полирование бывает двух типов – предварительное и окончательное. Предварительную полировку металлов применяют при механическом удалении неровностей, а окончательную – для создания идеально ровного и глянцевого финишного состояния металлической поверхностей и защиты её от неблагоприятных факторов внешней среды.

Электрохимическое полирование

Для электрохимического полирования (рис. 1,б) обрабатываемые детали, являющиеся анодом (т. е. электродом, соединенным с положительным полюсом источника тока), помещают в электролитическую ванну. Вторым электродом являются металлические катоды. Состав электролитов для электрополирования приведен в табл. 2. При электрохимическом полировании в первую очередь растворяются наиболее высокие выступы шероховатостей, затем поверхность выравнивается и становится гладкой и блестящей.

Таблица 2. Состав электролитов для электрополирования металлов и сплавов

Режимы полирования выбирают в зависимости от состава электролита и обрабатываемого металла.

В настоящее время для полирования меди и ее сплавов наиболее широко распространены фосфорнокислые электролиты (на основе ортофосфорнои кислоты), для полирования черных металлов — электролиты на основе фосфорной и серной кислот, для полирования золотых сплавов — электролиты на основе тиомочевины.

Химическое полирование

Химическое полирование заключается в том, что обрабатываемую деталь погружают на некоторое время в сосуд с химически активным раствором, где в результате возникающих химических и местных электрохимических процессов происходит растворение металла. Шероховатость поверхности уменьшается или совсем устраняется, при этом обработанная поверхность приобретает блеск. Все процессы химического полирования сопровождаются бурным выделением газов и паров кислот или щелочей.

В процессе полирования рекомендуется перемешивать раствор или встряхивать детали в емкости. Это дает возможность устранять скопление пузырьков газов на отдельных участках деталей, так как пузырьки газов понижают качество полирования. Одним из главных преимуществ химического полирования является его простота. Для получения требуемого результата достаточно обрабатываемую деталь на несколько минут погрузить в соответствующий раствор, без применения электрического тока, без механического воздействия. Метод не требует сложного оборудования.

К недостаткам такого полирования относится сложность корректирования (поддержание точных соотношений всех элементов в растворе путем добавления израсходованного элемента) растворов и малый срок их службы. Применяемые растворы чрезвычайно опасны для здоровья человека, и в домашних условиях без соответствующей подготовки проводить такое полирование нельзя. Блеск поверхности получается меньше, чем при электрохимическом полировании. Химическому полированию подвергаются в основном латунные или алюминиевые детали сложной конфигурации и небольших размеров, которые не требуют зеркального блеска.

Оборудование и химикаты

Для работы с различными металлами необходимо подобрать соответствующие электролиты, которые помогут добиться нужного результата:

  • Чаще всего применяются составы на основе кислоты различного вида — серной, фосфорной или хромовой.
  • Глицерин может быть добавлен для увеличения общей вязкости, если это потребуется.
  • Сульфоуреид выступает в роли ингибитора травления.
  • Для очистки различных изделий после проведения процедуры могут применяться различные растворители или щелочные средства. Нередко используются составы с поверхностно-активными действующими веществами.

1 К каким изменениям приводит полирование?

Полировка – финишная стадия при изготовлении различных изделий. Заключается этот процесс в оплавлении поверхностного слоя толщиной 0,01–0,03 мм. В результате устраняются все мелкие дефекты (микротрещины, царапины, раковины и т. д.). Поверхность получается идеально гладкой и отражает свет. Подобный эффект достигается благодаря тому, что глубина неровностей менее длины волны видимого света.

Полировка различных изделий

Добиться зеркальной поверхности металла можно и другими способами, например, хонингованием. Но они обычно требуют специального оборудования, материалов и знаний. Поэтому их применение оправдано только когда необходимо обеспечить заданную точность. С полированием все намного проще. Для этой операции используются довольно простые станки, а полировальный инструмент можно сделать даже в домашних условиях. Отлично проявили себя войлок, кожа, мягкая ткань. На рынке и в магазинах продаются специальные пасты, сделанные на основе окиси хрома, трепела или крокуса. Эти материалы используются для механического метода, но существуют еще и химические способы обработки поверхности в специальных растворах.

Зеркальная поверхность металла

Правильно подготовить изделие очень важно. На поверхности не допускается наличие различных дефектов, поэтому перед полированием следует стадия шлифования (снятие более толстого слоя). Чтобы найти скрытые изъяны, полирование начинается с наиболее «слабых» участков. Например, в сварных конструкциях это швы, где чаще всего обнаруживаются микротрещины или раковины. Полировку нержавеющей стали, впрочем, как и иных материалов, делают в несколько подходов, каждый раз подбирая рабочий материал меньшей зернистости. Причем желательно свести количество операций к минимуму.

Описание процесса

Во время электрохимического полирования обрабатываемая поверхность металла приобретает зеркальный блеск. Также уменьшаются имеющиеся шероховатости. Процесс происходит следующим образом:

  • Деталь считается анодом, то есть, электродом, несущим положительный заряд. Ее необходимо поместить в ванну со специальным составом.
  • Еще один важный компонент катоды, которые необходимы для осуществления реакции.
  • В результате воздействия протекает реакция, и происходит растворение. Оно неравномерно, сначала удаляются самые заметные шероховатости, которые выступают над поверхностью больше всего. Одновременно происходит полировка изделие приобретает зеркальный блеск.

Удаление заметных больших неровностей называется макрополированием, а сглаживание мелких дефектов это микрополирование. Если эти процессы во время проведения обработки протекают одновременно и равномерно, то изделие приобретает блеск и гладкость. Возможно и такое, что блеск будет получен без сглаживания или наоборот. Два вида полирования не обязательно связаны.

Химическая полировка металла приводит к тому, что на поверхности обрабатываемой детали во время процесса образуется особая пленка. По составу она может быть оксидной или гидроксидной. Если она равномерно охватывает всю поверхность, это создает условия для микрополирования. При этом внешняя часть покрытия, располагающаяся на поверхности, непрерывно растворяется. Чтобы получить возможность провести микрополирование, необходимо обеспечить поддержание равновесия между непрерывным образованием покрытия и растворением, во время работы с деталью толщина слоя должна оставаться неизменной. Это позволит электронам обрабатываемого металла и применяемого состава в процессе взаимодействовать без опасности растворения металлического изделия в агрессивной среде.

Макрополирование тоже напрямую зависит от образующейся пленки. Она покрывает изделие неравномерно, на выступающих неровностях этот слой более тонкий, поэтому они быстрее растворяются, за счет воздействия тока.

СОВЕТ: эффективность общего воздействия полирующего состава можно повысить, если использовать для обработки электролиты, содержащие в своем составе соли слабо диссоциирующих кислот, которые увеличивают общее сопротивление покрытия.

Кроме этого играет роль механическое воздействие, заключающееся в перемешивании. Может уменьшаться толщина пленки или диффузный слой. Некоторые используемые электролиты выполняют свою функцию только при нагреве, также общее правило, которое действует для всех составов при нагревании снижается нейтрализация, а скорость растворения пленки повышается. Плотность тока и уровень напряжения также входят в число факторов, оказывающих серьезное влияние на процесс. Например, если необходимо провести полировку медных изделий, то для нее подбирается состав с фосфорной кислотой и устанавливается предельный режим тока без образования кислорода. Именно поэтому важно точно соблюдать все необходимые параметры, чтобы добиться качественной полировки.

Технология электрохимического полирования металла

При электрополировке металла его поверхность становится блестящей. Технологический процесс состоит из ряда операций:

  1. Предварительно заготовка подвергается механической обработке с целью доведения шероховатости поверхности до 6–7 класса.
  2. Промывка для удаления грязи.
  3. Обезжиривание.
  4. Подсоединение к положительно заряженному электроду.
  5. Электрохимическое полирование.
  6. Промывка в щелочной среде с целью устранения кислотных остатков.
  7. Сушка. Для этого используется горячий воздух или опилки.
  8. Выдержка деталей в горячем масле, подогретом до температуры 120 °C.

При полировке происходит устранение неровностей с поверхности детали. Поэтому любой процесс сопровождается:

  1. Макрополированием. При этом идет растворение крупных выступающих вершин.
  2. Микрополированием. Сглаживаются мелкие неровности.

Погружаемое в электролит изделие покрывается оксидной пленкой, которая является защитной средой между металлом и электролитом. В продолжение всего процесса она постоянно растворяется и образуется вновь. Правильность технологического процесса заключается в том, чтобы ее толщина оставалась стабильной.

Непосредственно под пленкой происходит полировка металла. Осуществляется она за счет обмена электронами и ионами между анодом и электролитом. Толщина формируемой пленки всегда меньше на выступающих частях вершин неровностей. Именно здесь и происходит усиленное растворение металла. В углублениях слой пленки толще, и здесь обмен заряженных частиц уменьшенный.

Образование вязкой пленки толще во впадинах неровностей

Существуют другие факторы, влияющие на скорость полирования поверхности:

  • ­ перемешивание электролита;
  • ­ повышение его температуры;
  • ­ увеличение силы тока и напряжения.

Все эти факторы уменьшают поверхностный слой, что ускоряет полировку.

Для каждого изделия существует свой временной режим. В зависимости от продолжительности процедуры пропорционально увеличивается снимаемый слой металла. Этого не следует допускать, потому что шероховатость поверхности, выйдя на свой уровень, остается неизменной. Происходит ненужное растворение слоя изделия, что не оказывает влияния на качество поверхности.

Электролитно-плазменное полирование

Во время электролитно-плазменного полирования наблюдаются схожие процессы. Однако тут в качестве среды используются растворы солей аммония. Под воздействием высокого напряжения 200–350 В на поверхности детали, которая является анодом, образуется парогазовая оболочка. Формируется она за счет вскипания электролита. Через нее постоянно протекает электрический ток, вызывая появление плазменных разрядов, которые оказывают влияние на сглаживание поверхности. В результате время полировки составляет до 5 мин., а устранение небольших заусенцев – несколько секунд.

Важным условием является поддержание высокой температуры химической среды. Она необходима для создания условий пленочного кипения. Однако и превышать верхний предел нельзя. Например, для низкоуглеродистой стали интервал температур составляет 70–90 °C. За пределами этого интервала снижается качество полировки.

Пропорции создания хим состава

Разные виды полировки имеют свои особенности, у электрохимической также есть плюсы и минусы:

  • Этот способ благоприятно влияет на все свойства стали, увеличивая устойчивость к воздействию коррозии, а также облегчая проведение вытяжки и штамповки. Именно поэтому полировку такого типа часто используются как в лабораторных исследованиях, так и непосредственно для проведения различных работ в промышленности.
  • Электрохимическая полировка является более дешевым и быстрым способом обработки металлических изделий. Если механический метод занял бы несколько часов, то с воздействием химикатов и электричества можно закончить дело за несколько минут, получив качественный результат.
  • Полировка с электрохимическим воздействием незаменима при работе со сложными деталями, которые имеют различные полости и отверстия.

Химическая полировка металлов кроме преимуществ, имеет некоторые недостатки. Практически каждый существующий металл требует для проведения работы с ним специального состава, поэтому для разных изделий необходимо делать индивидуальные растворы. Также важно правильно подобрать соотношение компонентов, температуру нагрева, плотность тока от этого напрямую зависит качество полученного результата. Перед проведением такой обработки может потребоваться предварительное механическое шлифование. Кроме того, процедура требует повышенного расхода электроэнергии. Однако при определенных условиях достоинства метода вполне перевешивают его недостатки, позволяя проводить полировку.

Электрополировка нержавеющей стали, алюминия, титана, латуни и меди

Металлическому изделию можно придать блеск различными способами. Для этого не обязательно использовать специальные покрытия, можно воспользоваться методом полировки. Она может быть механической, например, с помощью наждачных кругов, химической — когда металл погружают в специальный раствор, а также электрохимической. В этом случае сочетается воздействие химических компонентов и электроразрядов, которые запускают определенные реакции или усиливают их. Электрохимическая полировка металлов может быть выполнена и в обычных домашних условиях, если собрать все необходимое оборудование.

Описание процесса

Во время электрохимического полирования обрабатываемая поверхность металла приобретает зеркальный блеск. Также уменьшаются имеющиеся шероховатости. Процесс происходит следующим образом:

  • Деталь считается анодом, то есть, электродом, несущим положительный заряд. Ее необходимо поместить в ванну со специальным составом.
  • Еще один важный компонент — катоды, которые необходимы для осуществления реакции.
  • В результате воздействия протекает реакция, и происходит растворение. Оно неравномерно, сначала удаляются самые заметные шероховатости, которые выступают над поверхностью больше всего. Одновременно происходит полировка — изделие приобретает зеркальный блеск.

Удаление заметных больших неровностей называется макрополированием, а сглаживание мелких дефектов — это микрополирование. Если эти процессы во время проведения обработки протекают одновременно и равномерно, то изделие приобретает блеск и гладкость. Возможно и такое, что блеск будет получен без сглаживания или наоборот. Два вида полирования не обязательно связаны.

Химическая полировка металла приводит к тому, что на поверхности обрабатываемой детали во время процесса образуется особая пленка. По составу она может быть оксидной или гидроксидной. Если она равномерно охватывает всю поверхность, это создает условия для микрополирования. При этом внешняя часть покрытия, располагающаяся на поверхности, непрерывно растворяется. Чтобы получить возможность провести микрополирование, необходимо обеспечить поддержание равновесия между непрерывным образованием покрытия и растворением, во время работы с деталью толщина слоя должна оставаться неизменной. Это позволит электронам обрабатываемого металла и применяемого состава в процессе взаимодействовать без опасности растворения металлического изделия в агрессивной среде.

Полирование нержавейки электрохимическим способом

Воздействие электролитов на поверхность нержавеющего металла позволяет удалить дефекты и достичь практически идеального зеркального блеска. Процесс полировки осуществляется за счет растворения тончайшего поверхностного слоя изделия, которое помещается в электролитный раствор и подсоединяется к источнику тока (плюсовой полюс). В данном случае заготовка выступает в качестве анода, тогда как катодом служит специальная пластина, проводящая электрический ток. В процессе пропускания тока, поверхность анода частично растворяется, удаляя мелкие шероховатости и неровности. Чем выше температура электролитной ванны и плотность воздействия тока, тем более толстый слой металла снимается при полировке.

Данный метод чаще всего применяется для чистовых работ, позволяя получить деталь с идеально гладкой поверхностью. Часто обработка используется перед нанесением гальванического защитного слоя.

Электроплазменный способ полировки

Для полирования нержавейки, а также сплавов на основе титана или меди, используется УПП – устройство, предназначенное для полировки плазмой. Суть обработки заключается в создании вокруг заготовки плазменного облака под воздействием электрического тока. Такой процесс позволяет удалить тончайший поверхностный слой, обеспечивая:

  • зеркальный блеск детали;
  • отсутствие заусенцев на поверхности;
  • притупление острых кромок.



Оборудование и химикаты

Для работы с различными металлами необходимо подобрать соответствующие электролиты, которые помогут добиться нужного результата:

  • Чаще всего применяются составы на основе кислоты различного вида — серной, фосфорной или хромовой.
  • Глицерин может быть добавлен для увеличения общей вязкости, если это потребуется.
  • Сульфоуреид выступает в роли ингибитора травления.
  • Для очистки различных изделий после проведения процедуры могут применяться различные растворители или щелочные средства. Нередко используются составы с поверхностно-активными действующими веществами.



Пропорции создания хим состава

Полировка проводится в специальных ваннах. Важно помнить, что их составляющие относятся к токсичным веществам и опасны для здоровья, особенно если используется нагрев, поэтому обращаться со всеми компонентами необходимо с максимальной осторожностью, соблюдая положенную технику безопасности.

Изделия из цветных или черных металлов можно обрабатывать при помощи универсального состава, который окажет необходимое воздействие. Для этого следует добавить все компоненты, соблюдая пропорции. Ортофосфорная кислота составляет основу — 65%. Серной кислоты должно быть 15% и 14% обычной воды. Хромовый ангидрид занимает 6%.



Химическая полировка алюминия — Справочник металлиста

Металлическому изделию можно придать блеск различными способами. Для этого не обязательно использовать специальные покрытия, можно воспользоваться методом полировки.

Она может быть механической, например, с помощью наждачных кругов, химической — когда металл погружают в специальный раствор, а также электрохимической. В этом случае сочетается воздействие химических компонентов и электроразрядов, которые запускают определенные реакции или усиливают их.

Электрохимическая полировка металлов может быть выполнена и в обычных домашних условиях, если собрать все необходимое оборудование.



Преимущества и недостатки

Разные виды полировки имеют свои особенности, у электрохимической также есть плюсы и минусы:

  • Этот способ благоприятно влияет на все свойства стали, увеличивая устойчивость к воздействию коррозии, а также облегчая проведение вытяжки и штамповки. Именно поэтому полировку такого типа часто используются как в лабораторных исследованиях, так и непосредственно для проведения различных работ в промышленности.
  • Электрохимическая полировка является более дешевым и быстрым способом обработки металлических изделий. Если механический метод занял бы несколько часов, то с воздействием химикатов и электричества можно закончить дело за несколько минут, получив качественный результат.
  • Полировка с электрохимическим воздействием незаменима при работе со сложными деталями, которые имеют различные полости и отверстия.

Химическая полировка металлов кроме преимуществ, имеет некоторые недостатки. Практически каждый существующий металл требует для проведения работы с ним специального состава, поэтому для разных изделий необходимо делать индивидуальные растворы. Также важно правильно подобрать соотношение компонентов, температуру нагрева, плотность тока — от этого напрямую зависит качество полученного результата. Перед проведением такой обработки может потребоваться предварительное механическое шлифование. Кроме того, процедура требует повышенного расхода электроэнергии. Однако при определенных условиях достоинства метода вполне перевешивают его недостатки, позволяя проводить полировку.



Полировка алюминия своими руками: способы, средства, приспособления

Алюминий является довольно мягким металлом. Любое изделие из него со временем теряет свой первоначальный вид, на поверхности появляются потертости, окислы, изделие тускнеет. Если вы хотите придать старой вещи новый вид, то следует отполировать алюминий. Для этого можно использовать один из следующих способов:

  • электрополирование;
  • химическое полирование;
  • декоративное травление.

Дополнительные рекомендации по работам

Полировка алюминия может осуществляться с помощью растворов щелочей:

  • тринатрийфосфата;
  • натриевой селитры;
  • каустической соды;
  • нитрата натрия.

Их температура должна оказаться выше по сравнению с кислотным методом, предел составляет 120-140 °С. Выдерживать изделия необходимо примерно 5-20 секунд. Когда используется такая методика, потери алюминия будут равны примерно 8 мкм от общей толщины слоя.

Использование электрополировки

Полировка алюминия может осуществляться и другим способом. При этом удается получить сверкающую и гладкую поверхность, а очистка характеризуется высоким качеством. Электролиты для таких работ в большинстве случаев обладают серной и ортофосфорной кислотой, остальные составляющие будут зависеть от материала.

Электролиты позволяют добиться блеска после завершения работ. Для процесса температура должна быть более низкой, чем в вышеописанном случае, температурный предел будет равен от 60 до 90 °С.

Полировку нужно осуществлять в течение 5 минут, тогда как плотность тока может быть равна 10-50 А/дм².

Процесс проведения полировки предполагает применение катодов из свинца, однако существуют и другие сплавы, которые предусматривают использование нержавейки.

Полировка требует использования дюралевых подвесок, а также электролитных ванн с полиэтиленовой, свинцовой или обработкой фторопластом. Нужно подготовить щелочные электролиты, они обойдутся дешевле.

На параметры процесса будет влиять состав электролита, температурный предел может изменяться от 40 до 95 °С, что касается выдержки, то она длится от 3 до 6 минут, тогда как плотность тока на аноде составляет предел от 3-20 А/дм². Выбирая катоды, следует предпочесть никелированные.

Особенности декоративного травления

Полировка алюминия может осуществляться декоративным способом. Эта методика выступает в качестве подвида электрополирования. Сплавы алюминия вытравливаются анодами по режиму в фосфорно-хромовом электролите.

На поверхности изделий образуется кристаллический рисунок, который имеет вид розеток или изморози. На анодную штангу развешивают все детали, а после можно приступать к обработке. Осуществляться манипуляции должны при напряжении в 25-30 В.

К концу напряжение поднимется до 35-40 В, анодная плотность тока будет равна пределу 8-12 А/дм², тогда как температура будет изменяться от 50 до 80 °С.

Примерно через 20 минут проявится рисунок. Если напряжение начнет подниматься произвольно, то можно считать процесс завершённым. После окончания манипуляций изделия промываются, хорошо просушиваются, над ними осуществляется анодное оксидирование. Алюминий после этого окрашивается органической краской.

Зеркальный блеск алюминия можно получить и другим методом анодного травления, которое называется искритом. Для этого изделия перед и после процесса подвергаются термической обработке по специальной схеме. Можно использовать анодное травление «снежок», которое позволяет создать матово-искристую поверхность.

Какой способ лучше использовать в домашних условиях

Паста для полировки является одним из самых часто используемых в домашних условиях средств для полировки алюминия. Это обусловлено тем, что химические составы отличаются ядовитостью, они опасны для здоровья человека. Для полировки можно применить:

  • наждачную бумагу;
  • жесткие щетки;
  • лак;
  • ветошь;
  • чистящие средства по типу спирта.

При выборе наждачной бумаги важно не переборщить с зернистостью, ведь в противном случае придется выводить царапины. Для повышения износоустойчивости и придания блеска лучше использовать лак.

Особенности электрохимической полировки

Электрохимическая полировка алюминия предусматривает осуществление работ методом параллельного химического и электрического воздействий.

По технологии такого способа деталь выступает в роли анодного электрода, к ней подсоединяют плюсовой источник подачи тока.

Заготовка с подведенным к ней током должна погружаться в резервуар, который наполняется электролитом. В роли второго электрода выступают медные катоды.

Использование полировальной машинки

Машинка для полировки является очень удобным средством для придания алюминию первоначального блеска. Для этого можно использовать полировальный круг на 1000, который смачивается водой. Губкой или тряпкой следует нанести воду на обрабатываемый участок. Далее включается машинка для полировки на 1400 оборотов за минуту. При подобной скорости брызги будут разлетаться на 1 м вокруг.

Поверхность алюминия станет греться, жидкость будет испаряться. Вы должны быть готовы к тому, что круг будет забиваться алюминиевой «кашей». Поэтому каждую минуту машинку следует останавливать, чтобы промыть абразивный круг мокрой губкой под струей воды. Для этого некоторые умельцы используют обычную брызгалку.

«Кашу» следует убирать еще и с детали. Зеркальный блеск получится, если вы дополнительно будете использовать еще и войлок. Этот этап является одним из самых важных. Именно от него будет зависеть 80% конечного результата.

Войлок должен выступать на 10 мм за основу, круг следует увлажнить, полив его брызгалкой. Деталь смачивается влажной губкой. Паста для полировки используется грубая, ее нанесение следует осуществлять на деталь, а не на круг.

Заключение

Полировка алюминия своими руками может осуществляться разными средствами, однако одной из самых эффективных является паста. Она не содержит аммиачных добавок и способна аккуратно очистить деталь от шероховатостей и царапин. С помощью данного состава можно добиться первоначального блеска. Защитный слой будет исключать появление окислений в течение долгого периода.

Электрохимическая полировка металлов — описание процесса

Металлическому изделию можно придать блеск различными способами. Для этого не обязательно использовать специальные покрытия, можно воспользоваться методом полировки. Она может быть механической, например, с помощью наждачных кругов, химической — когда металл погружают в специальный раствор, а также электрохимической. В этом случае сочетается воздействие химических компонентов и электроразрядов, которые запускают определенные реакции или усиливают их. Электрохимическая полировка металлов может быть выполнена и в обычных домашних условиях, если собрать все необходимое оборудование.

Описание процесса

Во время электрохимического полирования обрабатываемая поверхность металла приобретает зеркальный блеск. Также уменьшаются имеющиеся шероховатости. Процесс происходит следующим образом:

  • Деталь считается анодом, то есть, электродом, несущим положительный заряд. Ее необходимо поместить в ванну со специальным составом.
  • Еще один важный компонент — катоды, которые необходимы для осуществления реакции.
  • В результате воздействия протекает реакция, и происходит растворение. Оно неравномерно, сначала удаляются самые заметные шероховатости, которые выступают над поверхностью больше всего. Одновременно происходит полировка — изделие приобретает зеркальный блеск.

Удаление заметных больших неровностей называется макрополированием, а сглаживание мелких дефектов — это микрополирование. Если эти процессы во время проведения обработки протекают одновременно и равномерно, то изделие приобретает блеск и гладкость. Возможно и такое, что блеск будет получен без сглаживания или наоборот. Два вида полирования не обязательно связаны.

Химическая полировка металла приводит к тому, что на поверхности обрабатываемой детали во время процесса образуется особая пленка. По составу она может быть оксидной или гидроксидной. Если она равномерно охватывает всю поверхность, это создает условия для микрополирования. При этом внешняя часть покрытия, располагающаяся на поверхности, непрерывно растворяется. Чтобы получить возможность провести микрополирование, необходимо обеспечить поддержание равновесия между непрерывным образованием покрытия и растворением, во время работы с деталью толщина слоя должна оставаться неизменной. Это позволит электронам обрабатываемого металла и применяемого состава в процессе взаимодействовать без опасности растворения металлического изделия в агрессивной среде.

Метод электрохимического полирования

Электрохимическое полирование (электрополировка) — это метод обработки металла, при котором снижается шероховатость, соответственно повышается класс чистоты поверхности. Электрохимическое полирование используют как один из способов подготовки поверхности металла к нанесению гальванического покрытия, так и в качестве самостоятельного метода обработки металлов для улучшения декоративных характеристик и придания зеркального блеска поверхности изделия.

Основным преимуществом процесса является возможность минимизировать или полностью исключить трудоемкий процесс механического полирования, что особенно актуально при обработке изделий с труднодоступными участками или крупных партий малогабаритных изделий. Использование данного метода позволяет существенно снизить трудоемкость временные затраты на обработку изделий, что определяет относительно низкую стоимость обработки. Недостатком электрохимического полирования, кроме ограничения габаритов изделий, обусловленного необходимостью использования гальванической ванны, является сложность обработки тонкостенных изделий, или изделий с высоким классом точности.

Оборудование и химикаты

Для работы с различными металлами необходимо подобрать соответствующие электролиты, которые помогут добиться нужного результата:

  • Чаще всего применяются составы на основе кислоты различного вида — серной, фосфорной или хромовой.
  • Глицерин может быть добавлен для увеличения общей вязкости, если это потребуется.
  • Сульфоуреид выступает в роли ингибитора травления.
  • Для очистки различных изделий после проведения процедуры могут применяться различные растворители или щелочные средства. Нередко используются составы с поверхностно-активными действующими веществами.

Приготовление электролита для электрополировки

Приготовление электролита электрополировки очень простое и состоит в растворении хромового ангидрида в ванне, заполненной рассчитанным количеством воды, в которую затем последовательно небольшими порциями (во избежание резкого разогрева и выброса) приливают серную и ортофосфорную кислоты.

Полученный таким образом раствор подвергают нагреву и выдержке при температуре 100 … 110С до тех пор, пока его плотность (при 20С) не уложится в диапазон 1,72±0,02 г/см3. Если по каким-либо причинам такая температура недостижима, то для получения электролита с требуемой плотностью его прорабатывают током из расчета 5 А·час/л при анодной плотности тока 25 А/дм2.

Расчет количества химикатов, необходимых для приготовления 1 л электролита Количество H3PO4, потребное для составления 1 л электролита определяется по формуле:

Количество H2SO4 для тех же целей:

Количество хромового ангидрида CrO3:

В этих формулах приняты следующие обозначения: a1 – весовое процентное содержание H3PO4 в готовом электролите полирования (см. табл. 1); d – плотность готового электролита, г/см3; b1 – концентрация используемой H3PO4, вес.%; d1 – плотность используемой H3PO4, г/см3; a2 – концентрация H2SO4 (см. табл. 1), вес.%; b2 – концентрация используемой H2SO4, вес.%; в2 – плотность используемой H2SO4, г/см3; a3 – концентрация хромового ангидрида (см. табл. 1), вес.%.

Величины b1, b2, d1, d2 определяют по справочным таблицам.

Пропорции создания хим состава

Полировка проводится в специальных ваннах. Важно помнить, что их составляющие относятся к токсичным веществам и опасны для здоровья, особенно если используется нагрев, поэтому обращаться со всеми компонентами необходимо с максимальной осторожностью, соблюдая положенную технику безопасности.

Изделия из цветных или черных металлов можно обрабатывать при помощи универсального состава, который окажет необходимое воздействие. Для этого следует добавить все компоненты, соблюдая пропорции. Ортофосфорная кислота составляет основу — 65%. Серной кислоты должно быть 15% и 14% обычной воды. Хромовый ангидрид занимает 6%.

Отличия электрополирования от химического

Электрополирование, как и электроплазменная обработка, отличается от химического процесса тем, что через электролит подается электрический ток.

При химическом полировании изделие опускается в емкость с химическим раствором кислоты или щелочи. Здесь происходит растворение поверхностного слоя. Это сопровождается бурным кипением содержимого сосуда. Деталь приобретает нужную шероховатость за несколько секунд. В отличие от электрополирования такой метод менее затратный. Здесь не требуется сложного оборудования. Но присутствуют и недостатки:

  1. Сложность контроля над протеканием процесса.
  2. Без применения электрического тока качество получаемого изделия ниже. У него отсутствует блеск. Поэтому такому способу обработки больше подвергаются изделия из цветного металла, имеющие сложную конфигурацию, которым не предъявляется высоких требований.

Преимущества и недостатки

Разные виды полировки имеют свои особенности, у электрохимической также есть плюсы и минусы:

  • Этот способ благоприятно влияет на все свойства стали, увеличивая устойчивость к воздействию коррозии, а также облегчая проведение вытяжки и штамповки. Именно поэтому полировку такого типа часто используются как в лабораторных исследованиях, так и непосредственно для проведения различных работ в промышленности.
  • Электрохимическая полировка является более дешевым и быстрым способом обработки металлических изделий. Если механический метод занял бы несколько часов, то с воздействием химикатов и электричества можно закончить дело за несколько минут, получив качественный результат.
  • Полировка с электрохимическим воздействием незаменима при работе со сложными деталями, которые имеют различные полости и отверстия.

Химическая полировка металлов кроме преимуществ, имеет некоторые недостатки. Практически каждый существующий металл требует для проведения работы с ним специального состава, поэтому для разных изделий необходимо делать индивидуальные растворы. Также важно правильно подобрать соотношение компонентов, температуру нагрева, плотность тока — от этого напрямую зависит качество полученного результата. Перед проведением такой обработки может потребоваться предварительное механическое шлифование. Кроме того, процедура требует повышенного расхода электроэнергии. Однако при определенных условиях достоинства метода вполне перевешивают его недостатки, позволяя проводить полировку.

Электрохимическая полировка: все минусы процедуры

У методики есть свои минусы, которые выходят из:

  • необходимости часто менять оборудование;
  • невозможности обрабатывать все металлы;
  • токсичности процесса;
  • взрывоопасности.

Всё дело в том, что электролиты оказывают воздействие и на сам анод, так что если в процессе не применяются титановые детали, оборудование придётся периодически менять. Работа с кислотами никогда не относилась к безопасным или, тем более, полезным.

Электрохимическая полировка

позволяет не только улучшить внешний вид конструкции, она так же защищает металл от коррозии, помогая сохранить его механические характеристики. Так что не стоит оставлять данный метод без внимания, как минимум он — самый быстрый из всех существующих на данный момент предложений.

Химическая полировка железа

Здесь: https://old-rvs.itsoft.su/article/sart.html…9&conf_id=5 рассмотрено влияние примесей (углерод, хром, никель и т.п.) на растворимость водорода в железе. Выдержка из текста:

При 0,5% С (по массе) абсорбционная емкость сплава достигает минимума, после чего дальнейшее повышение концентрации углерода сопровождается ростом растворимости водорода . Максимальной растворимостью обладают сплавы, содержащие 1,5… 2,0% углерода.

В чистом железе до температуры плавления растворение водорода сопровождается значительным поглощением тепла. Это указывает на рост растворимости водорода в металле с повышением температуры, почему я советовал прогревать детали в вакууме (причем сперва надо дать вакуум, а потом начать нагрев). В сталях углерод понижает растворимость водорода при температурах до 7000С, при этом диффузионная подвижность его также снижается.

«Влияние хрома на растворимость водорода в сплавах с железом по своему характеру различно в α- и γ- фазах. При температурах 400… 9000C хром несколько уменьшает растворимость водорода в феррите, но увеличивает в аустените. Это же наблюдается и в хромистых и хромоникелевых сталях. В хромистом феррите диффузионная подвижность прогрессивно убывает с увеличением содержания хрома в железе . Напротив, в аустенитном состоянии с увеличением хрома в железе диффузионная подвижность водорода не чувствительна к росту концентрации хрома. В сталях с 19% (по массе) хрома при 200… 6000С наблюдается резкое уменьшение скорости диффузии водорода . Повышение концентрации хрома до 28% практически не влияет на скорость диффузии водорода . Малые добавки хрома (до 3%) снижают скорость диффузии водорода . Аналогичный эффект влияния хрома наблюдается и в сталях 34ХН3М и 20Х2Н4А; 40, 40Х и 35Х3.

Растворимость водорода в железоникелевых сплавах растет с увеличением в них никеля до 18% (по массе) и повышении температуры от 350 до 9000С. Диффузионная подвижность водорода в никелевом аустените не зависит от концентрации никеля. В более широком диапазоне концентраций от 2 до 98% Ni и температур от 200 до 6000С влияние никеля на диффузионную подвижность водорода носит сложный характер. Добавки никеля до 6% повышают скорость диффузии водорода в сплавах, в то время как большие (до 75%) ее понижают. Такое влияние связывается с образованием интерметаллида Ni3Fe. Это характерно и для низколегированных никелем сталей – 34ХМ; 34ХН2М и 34ХН3М; 40Х и 40ХН. Скорости диффузии водорода в никелевом аустените и марганцевом аустените близки, слабо зависят от состава и совпадают с диффузией водорода в аустенитных сталях – 1Х18Н9Т и 30Х10Г10.

Растворимость водорода в кремнистом железе с содержанием кремния до 1,5% (по массе) слабо возрастает, а затем при 7,8% Si быстро убывает. При температурах 400… 9000С с ростом содержания кремния в феррите растворимость водорода плавно увеличивается. Диффузионная подвижность водорода мало меняется с ростом содержания кремния до 0,5% и сильно снижается при концентрации кремния выше 7,8%.

Марганец при температурах 400… 9000С и содержании его в железе до 35% в зависимости от концентрационно-температурных условий может либо уменьшать растворимость водорода , либо увеличивать ее. Это объясняют внутрифазовым наклепом и фрагментацией зерен. Резкое снижение растворимости при содержании марганца 10… 20% связано с образованием ε – фазы. Скорость диффузии водорода в углеродистых сталях с ростом концентрации в них марганца от 0,5 до 4% уменьшается. Небольшие количества марганца понижают скорость диффузии водорода в сталях – 38НСА и 35ХГСА; 40ХН и 38ХГН. Марганец повышает энергию активации диффузии водорода .

Предварительная деформация, механическая и термическая обработка конструкционных сталей оказывают сильное влияние на растворимость и диффузионную подвижность водорода [8].

Рассмотренные эффекты влияния легирующих элементов и структуры на поведение водорода в сталях позволяют предположить пути снижения склонности сталей к водородному изнашиванию.

К факторам, снижающим склонность конструкционных сталей к водородному изнашиванию, можно отнести следующие:

1. Легирующие элементы в сталях не должны повышать растворимость и диффузионную подвижность водорода .

2. Фазовый состав стали должен обладать минимальной абсорбционной емкостью.

3. Термовакуумная обработка деталей для удаления растворенного в металле водорода .

4. Применение технологических процессов изготовления деталей, исключающих наводороживание.

5. Стабильность микроструктуры стали при работе узла трения.

6. Высокая пластичность стали.

7. Мелкозернистость или тонкопластинчатое строение микроструктуры.

8. Равномерно распределенные мягкая и твердая составляющие структуры.

Если именно изнашивание не играет особой роли, я бы остановился на пунктах 1, 2, и3 .

1. Костецкий Б.И. и др. Надежность и долговечность машин. Киев: «Техника», 1975.

2. Коттерилл П. Водородная хрупкость металлов. М.: Металлургиздат, 1963.

3. Карпенко Г. В ., Крипякевич Р.И. Влияние водорода на свойства стали. М.: Металлургиздат, 1962.

4. Колачев Б.А. Водородная хрупкость цветных металлов. М.: «Металлургия», 1966.

5. Гельд П. В ., Рябов Р.А. Водород в металлах и сплавах, М.: «Металлургия», 1974.

6. Черепанов Г.П. Механика хрупкого разрушения. М.: «Наука», 1974.

7. Стеклов О.И. Прочность сварных конструкций в агрессивных средах. М.:

8. Справочник по машиностроительным материалам. Сталь, том 1, под ред. Ю.А. Геллера. М.: «Машиностроение», 1962.

Особенности эксплуатации ванны электрополирования

Детали с малым допуском на обработку во избежание выхода из допуска полируют при анодной плотности тока 75 . 100 А/дм2 в течение 2 . 3 минут.

Предварительная обработка отполированных деталей в случае, если они предназначены для нанесения какого-либо гальванического покрытия, состоит в декапировании продолжительностью 15 . 20 секунд в 5%-ном растворе HCl, что обеспечивает прочное сцепление покрытия.

Если электрополирование является финишной операцией, то для повышения коррозионной устойчивости деталей их подвергают щелочной обработке продолжительностью до 15 минут в 10%-ном растворе едкого натра с температурой 65 . 75С.

Подвески для загрузки деталей в полировочную ванну должны изготавливаться из освинцованной стали, а их конструкция должна обеспечивать надежный контакт с анодной штангой. Большую эксплуатационную надежность показали подвески из титана. Изоляцию нерабочей поверхности подвески можно выполнить поливинилхлоридом.

Свойства металла после пассирования

Данная процедура приводит к образованию на поверхности металла химически стабильного слоя, устойчивого к коррозии. Изделия из пассивированного металла имеют более длительный срок службы. Если пассирование проводилось с использованием хроматов, то их поверхность, ко всему прочему, будет обладать повышенной устойчивостью к механическим воздействиям. Нужно отметить, что у оксидного слоя есть свой предел прочности и его механическое повреждение приводит к последующему появлению коррозии.

Электрохимическая полировка металлов — описание процесса

Металлическому изделию можно придать блеск различными способами. Для этого не обязательно использовать специальные покрытия, можно воспользоваться методом полировки. Она может быть механической, например, с помощью наждачных кругов, химической — когда металл погружают в специальный раствор, а также электрохимической. В этом случае сочетается воздействие химических компонентов и электроразрядов, которые запускают определенные реакции или усиливают их. Электрохимическая полировка металлов может быть выполнена и в обычных домашних условиях, если собрать все необходимое оборудование.

Описание процесса

Во время электрохимического полирования обрабатываемая поверхность металла приобретает зеркальный блеск. Также уменьшаются имеющиеся шероховатости. Процесс происходит следующим образом:

  • Деталь считается анодом, то есть, электродом, несущим положительный заряд. Ее необходимо поместить в ванну со специальным составом.
  • Еще один важный компонент — катоды, которые необходимы для осуществления реакции.
  • В результате воздействия протекает реакция, и происходит растворение. Оно неравномерно, сначала удаляются самые заметные шероховатости, которые выступают над поверхностью больше всего. Одновременно происходит полировка — изделие приобретает зеркальный блеск.

Удаление заметных больших неровностей называется макрополированием, а сглаживание мелких дефектов — это микрополирование. Если эти процессы во время проведения обработки протекают одновременно и равномерно, то изделие приобретает блеск и гладкость. Возможно и такое, что блеск будет получен без сглаживания или наоборот. Два вида полирования не обязательно связаны.

Химическая полировка металла приводит к тому, что на поверхности обрабатываемой детали во время процесса образуется особая пленка. По составу она может быть оксидной или гидроксидной. Если она равномерно охватывает всю поверхность, это создает условия для микрополирования. При этом внешняя часть покрытия, располагающаяся на поверхности, непрерывно растворяется. Чтобы получить возможность провести микрополирование, необходимо обеспечить поддержание равновесия между непрерывным образованием покрытия и растворением, во время работы с деталью толщина слоя должна оставаться неизменной. Это позволит электронам обрабатываемого металла и применяемого состава в процессе взаимодействовать без опасности растворения металлического изделия в агрессивной среде.

Общая информация

Процесс электрохимического полирования заключается в анодном растворении микровыступов поверхности металла в электролите под воздействием постоянного тока. В результате анодной обработки удаляется наружный деформированный слой металла, поверхность которого становится однородной и гладкой, повышается отражательная способность основного металла , улучшается качество готовых изделий. Электрохимическое полирование – технология, позволяющая заменить трудоемкие механические методы шлифовки и полировки поверхности изделий на более быстрое и качественное электрохимическое полирование.
Полирование нержавеющих сталей осуществляется в электролите при температуре не выше 60-80 С, что не оказывает термического воздействия на структуру поверхностного слоя обрабатываемых деталей, и практически не приводит к их напряжению или наводораживанию.

Процесс электрохимического полирования изделий сложной формы является достаточно трудоёмким, поскольку требует изготовления специальных приспособлений (технологической оснастки) для обеспечения равномерного блеска всей полируемой поверхности, в том числе углублений, отверстий и других труднодоступых для равномерного распределения тока участков.

Для электрохимического полирования нержавеющих сталей некоторых марок в раствор вводят ингибиторы. Также широкое применение нашли поверхностно-активные вещества в качестве добавок в электролиты для расширения возможностей процесса.

Оборудование и химикаты

Для работы с различными металлами необходимо подобрать соответствующие электролиты, которые помогут добиться нужного результата:

  • Чаще всего применяются составы на основе кислоты различного вида — серной, фосфорной или хромовой.
  • Глицерин может быть добавлен для увеличения общей вязкости, если это потребуется.
  • Сульфоуреид выступает в роли ингибитора травления.
  • Для очистки различных изделий после проведения процедуры могут применяться различные растворители или щелочные средства. Нередко используются составы с поверхностно-активными действующими веществами.

Пропорции создания хим состава

Полировка проводится в специальных ваннах. Важно помнить, что их составляющие относятся к токсичным веществам и опасны для здоровья, особенно если используется нагрев, поэтому обращаться со всеми компонентами необходимо с максимальной осторожностью, соблюдая положенную технику безопасности.

Изделия из цветных или черных металлов можно обрабатывать при помощи универсального состава, который окажет необходимое воздействие. Для этого следует добавить все компоненты, соблюдая пропорции. Ортофосфорная кислота составляет основу — 65%. Серной кислоты должно быть 15% и 14% обычной воды. Хромовый ангидрид занимает 6%.

Химическое и электрохимическое полирование


Химическое и электрохимическое полирование принципиально отличаются от механического полирования. Обработанные этими методами полирования детали также приобретают блеск, привлекательную и гладкую поверхность. Химическое и электрохимическое полирование осуществляется растворами, содержащими активные добавки.

Рецепты ванн и режимы для химического и электрохимического полирования

ВНИМАНИЕ. ВАННЫ для химического и электрохимического полирования ОЧЕНЬ ОПАСТЫ для здоровья, ОСОБЕННО ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ. Поэтому не пытайтесь делать этого дома, тем более если у вас нет необходимого навыка, знаний и оборудования.

Химическое полирование деталей из углеродистой стали.

Химическое полирование деталей из углеродистой стали можно выполнять в различных растворах. Один из них (в вес. %): 15-25% ортофосфорной кислоты, 2-4% азотной кислоты, 2-5% соляной кислоты, 81-60% воды.

Режим работы: рабочая температура 80° С, выдержка 1-10 мин. В данном растворе производят также полирование нержавеющей стали. Химическое полирование деталей из стали выполнят также в следующем растворе: 25 г щавелевой кислоты, 13 г пергидроли, 0,1 г серной кислоты, до 1 л воды.

Режим работы: рабочая температура 20° С, выдержка 30-60 мин.

Химическое полирование деталей из нержавеющей стали.

Химическое полирование деталей из нержавеющей стали марки Х18Н9Т выполняют в растворе следующего состава: 40 см3 азотной кислоты, 70 см3 соляной кислоты, 230 см3 серной кислоты, 10 г/л столярного клея, 6 г/л хлористого натрия, 6 г/л красителя кислотного черного. Режим работы: рабочая температура 65-70°С, выдержка 5-30 мин.

Химическое полирование деталей из алюминия и его сплавов.

Для полирования мелких алюминиевых деталей используют следующий состав раствора: 60 см3 ортофосфорной кислоты, 200 см3 серной кислоты, 150 см3 азотной кислоты, 5 г мочевины. Режим работы: рабочая температура 100- 110° С, выдержка 15-20 с. Полирование деталей из алюминиево-магниевого сплава АМг производят в одном из растворов следующего состава: 500 или 300 см3 ортофосфорной кислоты, 300 или 450 см3 серной кислоты (аккумуляторной), 150 или 170 см3 азотной кислоты.

Химическое полирование деталей из меди и, ее сплавов.

Химическое полирование деталей из меди и ее сплавов выполняют в следующем растворе: 800 см3 серной кислоты; 20 см3 азотной кислоты; 1 см3 соляной кислоты; 200 см3 пергидроли; 20-40 см3 хромового ангидрида. Режим работы: рабочая температура 20-40°С, выдержка до 1-2 мин. Может быть также использован раствор: 250-270 см3 серной кислоты, 250-270 см3 азотной кислоты, 10-12 см3 нитрита натрия. Режим работы: рабочая температура 30-40° С, выдержка 1-3 мин.

Химическое полирование деталей из никеля.

Для химического полирования деталей из никеля используют раствор (в вес. %) 45-60% ортофосфорной кислоты, 15-25% серной кислоты, 8-15% азотной кислоты, 10-20% соды. Режим работы: рабочая температура 65-70° С, выдержка 0,5-1 мин.

Электролитическое полирование деталей из углеродистой стали.

Наиболее популярным является так называемый универсальный электролит для полирования деталей из черных и цветных металлов. Его состав следующий (в вес. %): 65% ортофосфорной кислоты, 15% серной кислоты, 6% хромового ангидрида, 14% воды. Режим работы: рабочая температура 70-90° С, анодная плотность тока 40-80 а/дм2, напряжение 6-8 в, выдержка 5-10 мин.

Электролитическое полирование деталей из нержавеющей стали.

Детали из нержавеющей стали (хромоникелевой и хромоникельмолибденовой) полируют в растворе (в вес. %): 65% ортофосфорной кислоты, 15% серной кислоты, 5% хромового ангидрида, 12% глицерина, 3% воды. Режим работы: рабочая температура 45-70°С, анодная плотность тока 6-7 а/дм2, напряжение 4,5-6в, выдержка 4- 30 мин (для штампованных деталей 4-6 мин, для деталей после сварки или термической обработки 10-12 мин, для литых отпескоструенных деталей из стали Х18Н9Т около 30 мин).

Электролитическое полирование деталей из алюминия и его сплавов.

Для полирования деталей из алюминия и сплавов АМг и АМц хорошо зарекомендовал себя электролит, следующего состава (в вес. %): 65-70% ортофосфорной кислоты, 8-10% хромового ангидрида, 20-27% воды. Режим работы: рабочая температура 70-80° С, плотность тока в свежеприготовленном растворе 10-30 а/дм2, в растворе насыщенном солями 10-20 а/дм2. Выдержка 5 мин и более.

Реверсирование при применении свежеприготовленного раствора tа-10 сек, tк — 2 сек; при применении раствора насыщенного солями, tа — 10 сек, tк — 5 сек. Для полирования деталей из дюралюминия Д16-Т рекомендуется следующий состав раствора (в вес. %): 40% серной кислоты, 45% ортофосфорной кислоты, 3% хромового ангидрида, 11% воды.

Режим работы: рабочая температура 60-80° С, анодная плотность тока 30-40 а/дм2, напряжение 15-18 в, выдержка — несколько минут.

Электролитическое полирование деталей из никеля и никелевых покрытий.

Для полирования деталей из никеля рекомендуется раствор: 1200 г/л серной кислоты, 120-150 г/л ортофосфорной кислоты, 15-20 г/л лимонной кислоты. Режим работы: рабочая температура 20-30° С, анодная плотность тока 30-50 а/дм2, выдержка до 1 мин. Для полирования применяют также 70%-ный раствор серной кислоты. Анодная плотность тока 40 а/дм2, температура 40°С, продолжительность процесса 30 сек.

Электролитическое полирование деталей из меди и ее сплавов.

Для полирования этих деталей применяют следующий электролит: 1200 г/л ортофосфорной кислоты, 120 г/л хромового ангидрида. Режим работы: рабочая температура 20-30°С, анодная плотность тока 35-50 а/дм2, выдержка 0,5-2 мин. Применяют также однокомпонентный раствор ортофосфорной кислоты при температуре 18-25°С; анодная плотность тока для деталей из меди 1,6 а/дм2, для деталей из медных сплавов 0,8-1 а/дм2, выдержка 10-20 мин.

Преимущества и недостатки

Разные виды полировки имеют свои особенности, у электрохимической также есть плюсы и минусы:

  • Этот способ благоприятно влияет на все свойства стали, увеличивая устойчивость к воздействию коррозии, а также облегчая проведение вытяжки и штамповки. Именно поэтому полировку такого типа часто используются как в лабораторных исследованиях, так и непосредственно для проведения различных работ в промышленности.
  • Электрохимическая полировка является более дешевым и быстрым способом обработки металлических изделий. Если механический метод занял бы несколько часов, то с воздействием химикатов и электричества можно закончить дело за несколько минут, получив качественный результат.
  • Полировка с электрохимическим воздействием незаменима при работе со сложными деталями, которые имеют различные полости и отверстия.

Химическая полировка металлов кроме преимуществ, имеет некоторые недостатки. Практически каждый существующий металл требует для проведения работы с ним специального состава, поэтому для разных изделий необходимо делать индивидуальные растворы. Также важно правильно подобрать соотношение компонентов, температуру нагрева, плотность тока — от этого напрямую зависит качество полученного результата. Перед проведением такой обработки может потребоваться предварительное механическое шлифование. Кроме того, процедура требует повышенного расхода электроэнергии. Однако при определенных условиях достоинства метода вполне перевешивают его недостатки, позволяя проводить полировку.

Технология электрохимической полировки металла

Электрохимическая полировка – это процесс обработки поверхности детали путем погружения ее в кислотный раствор. Металлическое изделие подключается к положительно заряженному аноду, и через электролит пропускается ток с напряжением 10–20 В. В результате металл покрывается оксидной или гидроксидной пленкой, под которой происходит полировка путем сглаживания выступающих микронеровностей. Примерно такой же эффект дает химполировка, но здесь заготовки не подвергаются влиянию электрического тока.

Качество работы зависит от однородности материала. Полирование чистых металлов приводит к получению гладкого блестящего изделия. Полировка сложных сплавов не дает такого результата. По окончании работы обработанная поверхность повышает свою чистоту шероховатости на 2 класса.

Полирование деталей ведется только после их визуального осмотра. Не допускается наличие на них глубоких царапин или раковин, поскольку такие дефекты не устраняются в процессе полировки. Оптимальным вариантом является работа с цилиндрическими деталями. Плоские заготовки хуже поддаются полировке.

По окончании процедуры изделия приобретают ряд положительных качеств: у них увеличивается коррозионная стойкость, повышается прочность поверхностного слоя и понижается коэффициент трения.

Как правильно шкурить потолок или стену после шпаклевки

Шлифовка стен после шпаклевки – обязательная процедура для отделочных работ. Производится выравнивание поверхностей, удаляется зернистость, оставшаяся от шпатлевания вследствие наложения слоев раствора. Шкурение проводится при помощи наждачки, специальной сетки или шлифмашины. Затирка выполняется перед окрашиванием поверхностей или оклейкой обоями.

  1. Ошкуривание стен и потолка после шпаклевки
  2. Необходимые инструменты, материалы
  3. Затирка поверхности шкуркой
  4. Зернистость полотна
  5. Как минимизировать дефекты
  6. Укладка штукатурки

Ошкуривание стен и потолка после шпаклевки

Иногда строители утверждают, что ошкуривание стены после шпаклевки выполнять не обязательно, но не нужно слушать этих «мастеров».

Эта процедура может быть не нужна в нескольких случаях:

  1. Если поверхности ровные или будет использоваться плотная отделка. Так, к примеру, толстые обои, кафель и иные материалы в шлифовке не нуждаются.
  2. Подготовительные работы в складских помещениях. Тратиться на материалы нецелесообразно, можно оставить просто отделку черновой.

В других случая эти работы надо выполнить. Так при поклейке обоев они будут надежней держаться, крайние части полотен не отходят от стены. Шлифовка перед окрашиванием является обязательной. Краска не замаскирует дефекты, их можно будет увидеть невооруженным взглядом. Шлифованием не стоит пренебрегать, даже если поверхность ровная.

Внимание! Стены под краску должны быть гладкими. В этом случае они полируются два раза.

Необходимые инструменты, материалы

Выбор устройств для ошкуривания большой. Выделяют несколько групп инструментов:

  • электроинструменты;
  • ручные (к этому виду относят ручные терки, модели которых вне значительной степени отличаются по конструкции и размеру).

Популярность ручного инструмента объясняется:

  • легкостью в использовании – при этом не потребуется строительного опыта;
  • доступностью в любом диапазоне цен;
  • качеством проведенных работ;
  • универсальностью затирочного материала – наждачка разной зернистости или шлиф-сетка.

На рынке существуют такие виды:

  1. Базовый инструмент – ручка посередине и резьбовое крепление с помощью «барашков» по бокам. Это удобное для руки приспособление. Основной недостаток – это время, которое тратится на процесс установки новой шкурки: отвинтить «барашки», закрепить и настроить новую, отцентровать губки креплений перед окончательной фиксацией гаек. Традиционная конструкция собой представляет пластиковую или металлическую поверхность с деревянной ручкой. Первый вариант недолговечный, в отличие от железного, но легче.
  2. Классическая терка в форме бруса, но с механическими подпружиненными креплениями для обтягивания наждачного листа. Конструкция упрощает и ускоряет установку нового полотна. По бокам бруса находятся углубления для пальцев – этот прием удержания в руке намного удобней в процессе ошкуривания.
  3. Пластичные губки-бруски из полимера с нанесенным абразивным слоем. Это дополнительное приспособление разной формы – в виде трапеции или прямоугольника для затирки углов и находящегося плоского декора (розетов для люстр, лепнины).
  4. Устройства с пылеотведением. От классического приспособления отличаются патрубком, располагающимся на корпусе, куда подключается шланг пылесоса. Это оборудование удобно в процессе ошкуривания потолка. Хоть всасывающая гофра немного ограничивает действия человека, но, если нужно провести работу с минимальным количеством появившейся грязи, неудобство себя оправдывает.
  5. Терки с шарнирным штуцером со съемной телескопической рукоятью. Устройство можно использовать под заводское изделие, которое находится в базовой комплектации либо под самодельную ручку. Оборудование дает возможность сделать зачистку большой территории. При низких потолках устройство применяется, находясь на полу.

Для шлифования дополнительно потребуется такой инструмент:

  • респиратор, пластмассовые очки;
  • лампочка с удлинителем;
  • шпатель с длиной лезвия не менее 30 см;
  • набор шлиф-сеток, наждачек;
  • стремянка
  • карандаш.

Важно! Лампочка не для освещения комнаты – поднося ее к стенке, можно определить небольшие дефекты, контролировать их исправление и результат проведенных работ в общем. Поэтому освещение желательно использовать на штативе, его несложно сделать самому, при этом лампу можно удерживать в руках.

Затирка поверхности шкуркой

Зашкуривание выполняется пошагово:

  1. Вначале выделяют видимые дефекты. Для чего потребуется лампа, которую нужно установить максимально ближе к стенке. Так, от нее можно увидеть тень от выступающего шпаклевочного слоя. Эти участки необходимо пометить.
  2. Правильней всего производить затирку с угла. Перемещаться требуется сверху-вниз, очищая полоску приблизительно в 1 м. После зашкуривания этой полосы начинают работать со следующей. Движения надо производить вращающие.
  3. Шлифовать все поверхности не прикладывая значительных усилий. Желательно для этого выбрать разную зернистость наждачных бумаг. Не стоит сильно давить на наждачку, иначе на поверхности образуются углубления.
  4. Зачищение финишного слоя включает в себя такие же этапы, что и стартовая зачистка. При этом полировка выполняется тщательно, но аккуратно, иначе можно повредить слой шпаклевки. Производить финишные работы рекомендуется абразивной сеткой.

Чтобы ошкуривать потолок или стены, не требуется большой опыт в строительных работах. Достаточно просто знать, какой шкуркой шкурить шпаклевку и соблюдать определенные этапы действий.

  1. Спешить при ошкуривании поверхностей не нужно! Все задачи требуется делать внимательно, четко, не торопясь.
  2. Если не знаете, какую выбрать шкурку для шпаклевки, проконсультируйтесь со строителями или менеджерами магазина. Также можно попробовать на незаметной поверхности все выбранные инструменты, контролируя давление и скорость передвижения по стене.
  3. Новичкам не рекомендуется использовать механизированные приборы. Первые попытки корректирования покрытия производите подручными инструментами (наждаком, шлиф-сеткой и так далее).
  4. Запрещено изменять место положения осветительного прибора, так можно исключить преломление лучей света.
  5. Производите работы на небольших площадях, передвигаясь сверху-вниз.
  6. Соблюдайте инструкцию по эксплуатации инструмента.
  7. В углах удобно работать абразивной трапециевидной губкой.
  8. Проверяйте ровность очищенной стены строительным уровнем или длинной рейкой под осветительным прибором: если тени нет, то планка прилегает плотно, то есть вышла ровная поверхность.

Зернистость полотна

Прежде чем шкурить стену после шпаклевки, требуется подобрать шлифовочное полотно. Для этого применяется либо шлиф-сетка, либо обычная наждачка. Основное достоинство стеки – абразив не забивается строительной пылью. Причем наждак также отличный выбор, если возникает вопрос, какой шкуркой шкурить шпаклевки под обои. Поскольку в этом случае не потребуется идеальная гладкость поверхности, да и стоит наждак дешевле сетки. Однако заменять его нужно чаще, тем более мелкозернистый.

Зернистостью называются микроразмеры шлифа. Она может маркироваться с номера 50 до 2500 (стандарт FERA).

Когда решается, какой сеткой шлифовать финишные шпаклевки под покраску, то для этого используются листы №60-360.

Шкурка для шпаклевки под обои выбирается под номером 110-190. С учетом состояния черновой поверхности в определенных случаях используется №70-110. После второго финишного покрытия применяют наждачную бумагу с №210-270 и ниже. Выбор наждака значительно будет зависеть от уложенного штукатурного покрытия.

Решая, какой наждачкой затирать шпаклевку, нужно также подобрать инструмент:

  1. Для больших площадей, где находится сложный рельеф, лучшим выбором будет мощная эксцентриковая шлифовальная машинка.
  2. При средних площадях можно воспользоваться плоскошлифовальной машинкой (но углы нужно дорабатывать вручную).
  3. Для маленьких поверхностей используются ручные способы затирки с помощью бруска.

Обратите внимание! Большинство моделей шлифмашин имеют современную эргономику, за счет этого во время работы с оборудованием руки практически не устают. Продвинутые устройства оборудуются телескопическими рукоятями, это дает возможность дотягиваться до любого участка на потолке.

Как минимизировать дефекты

Чтобы избежать возможных недочетов, необходимо использовать универсальные или финишные шпаклевочные составы. Первый вариант смеси укладывается в один слой на подготовленное основание, второй способ подходит только для применения на базовом слое.

Внимание! Изготовители штукатурок на упаковке указывают расход смеси, в среднем этот показатель при толщине слоя 1 см для одного квадратного метра составляет 10 килограмм.

Растворы разные по составу:

Вид штукатурки Описание
Водно-дисперсионные Легко поддаются шлифовке, отлично держатся на стене.
Полимерные Имеют высокую эластичность и прочность. Простые в обработке, причем покрытие не теряет свойств. В основе акрил.
Гипсовые Самые легкие при зашкуривании, но имеют низкую надежность, в отличие от остальных видов. Можно использовать только для комнат, где минимальная влажность.
Цементные Во время засыхания усаживаются, это понижает их прочность и сцепление с предварительно покрытым грунтом на стене. Чтобы избежать этого, в раствор вводятся пластификаторы, это приводит к удорожанию.
Масляно-клеевые Характеризуются хорошей адгезией. Подходят для окрашивания.

Также важным фактором во время выбора будет компания-производитель штукатурных смесей. Лучше купить качественный гипсовый или полимерный состав, чем плохой водно-дисперсионный.

Укладка штукатурки

Во время шлифовки появляется много пыли, потому усилия надо направить на правильную укладку смеси. Строители используют шпатель с длиной лезвия от 300 мм, накладывая состав более узким.

Чтобы не нарушить слой при повторной укладке шпаклевки, можно воспользоваться резиновым шпателем. Он гасит рывки при нанесении материала. Перемещаться необходимо снизу-вверх, создавая полоски с шириной 1 метр и нахлестами приблизительно 50 мм. Чтобы улучшить прочность покрытия, в него подкладывается пластиковая армирующая сетка. Все дефекты требуется исправлять сразу, пока состав не засох. Слой в 3-4 мм высыхает полностью за 24 часа.

После окончания работы нужно строительным уровнем узнать, остались ли неисправленные участки на стене. Его плотно прижимают к поверхности.

Когда стены и потолок зачищены, производить последующие работы грунтом запрещается. Надо избавиться от пыли, осевшей на поверхностях после шлифования. Для чего используется строительный пылесос.

Внимание! Необходимо обработать весь периметр и тщательно удалить образовавшиеся загрязнения. Если пыль в последующем перемешается с клеем для обоев, то появятся комочки.

Еще один вариант очищения стен от пыли не потребует использования пылесоса, потому его часто применяют в домашних условиях, хоть он более трудоемкий. Этапы действий выглядят следующим образом:

  1. При помощи широкой кисточки с мягким ворсом сметают максимальное количество пыли. Можно воспользоваться простым веником. Не нужно сильно давить, поскольку шпаклевочный слой – пластичный.
  2. Затем выполняется следующий этап. Тряпка смачивается в теплой воде и тщательно отжимается. Материал не должен линять, появятся цветные разводы, которые пройдут через краску или обои.
  3. Необходимо выждать, пока штукатурка полностью засохнет, затем начинать финишную отделку. Чтобы шпаклевка не вымывалась, тряпка должна быть чуть влажной.
  4. Удалить пыль надо полностью, чтобы не допустить появление коррозии на вторичных стройматериалах.
  5. После очищения приступают к грунтовке и покрытию антигрибковыми составами.

Шлифование поверхностей позволит создать качественное основание. Даже если вначале выравнивание было выполнено неправильно, то при последующей отделке зрительно исправляются появившиеся недостатки. Выполнить работу можно без строителей. Главное – внимательно изучить пошаговую инструкцию.

Способы шлифовки стен после шпаклевки под отделку

Технология нанесения шпаклевки на стену валиком

Как самому выровнять стены и потолок при помощи шпаклевки

Расчет расхода шпаклёвки по штукатурке на 1м2 стены

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: