Что такое и из чего делают шифер?

Из чего делают шифер — волновой и плоский

Шифер – это материал, используемый в обустройстве кровли, представляющий собой плоские или волнистые листы асбестоцемента. Профилированное изделие выпускается на рынок в разных вариантах исполнения. Ввиду этого при выборе следует учитывать состав и технологию изготовления. Это позволит построить надёжную и безопасную конструкцию.

  1. Историческая справка
  2. Процедура создания шифера
  3. Технология
  4. Формы шифера
  5. Состав шифера
  6. Безопасность использования в строительстве

Историческая справка

Волновой шифер был изобретен в 1902 году

Волновой шифер изобрёл в 1902 году инженер из Австралии Л. Гатчек. Его разработка позволила наладить производство кровельного материала в крупных масштабах. Постепенно изделие стало выпускаться во Франции, Италии и Чехии. С 1908 г. данный материал стали делать в царской России.

Первый завод по производству шифера построили в небольшом посёлке Фокино Брянской области. Так как на территории России находятся крупнейшие минеральные запасы, материал приобрёл широкую популярность в качестве обустройства крыши. До начала Второй мировой войны в Советском союзе насчитывалось порядка шести крупных заводов, занимающихся выпуском плоского и волнового шифера.

Процедура создания шифера

Асбестоцементная марка шифера до сих пор пользуется высоким спросом среди кровельных материалов. В первую очередь это обусловлено низкой ценой изделия. На рынок продукция выпускается разной формы волны – стандартная, усиленная, унифицированная, а также есть плоские модели.

Технология

В качестве сырья для шифера используется смесь из асбеста, портландцемента и воды. Характеристики готового материала зависят от качества и уровня содержания компонентов, в т. ч. их минеральный и химический состав.

Поэтапная технология производства выглядит следующим образом:

  1. Изготавливается пульпа из хризолит-асбеста, воды, наполнителей, цемента и стекловолокна.
  2. Проводится замес сырья в специальных ёмкостях.
  3. Выемка имеет строгую дозировку порции, необходимой для производства одного листа.
  4. Смеси придаётся нужная форма с последующим извлечением части жидкости.
  5. Заготовка переносится в оборудование, где под давлением оставшаяся влага испаряется.
  6. Размеры продукции придаются в соответствии с ГОСТом 30340-2012, который также включает определение, шифер, что это такое и технические параметры.
  7. Обрезки и небольшие куски отправляют на вторичную переработку.

Готовая продукция передаётся на хранение для набора прочности. После тестирования образца партии товар направляется заказчику или на прилавок магазина.

Из кровельного шифера дачники создают высокие грядки.

Формы шифера

Волновой и плоский шифер

Строительная индустрия предлагает потребителям различные типы материалов исходя из их функционального назначения. Отличие марок шифера зависит от толщины и формы:

  • волна;
  • плоский.

Любой из этих вариантов может использоваться для обустройства крыш, перегородок, заборов или беседок. Данный материал выбирают не только из-за красоты, но и надёжности готового сооружения. Изделия обладают прочностью на изгиб от 18 до 23 Мпа.

Поставляется в магазины продукция в рулоне или листах. Первый вариант отличается мягкостью, т. к. в его составе присутствуют минволокона с битумной пропиткой. Второй вид чаще используется в строительстве хозблоков, заборов, временных ограждений и перегородок. Благодаря различным присадкам уровень вредности материала снижен.

Размеры стандартного листового шифера подчинены ГОСТу 30340-2012: 1125х1750 см, толщина 0,6-0,75 мм, шаг волны до 20 см.

Состав шифера

Среди технических параметров шиферных листов на первые позиции выходит экологическая безопасность. Если при строительстве в качестве кровельного покрытия выбран этот материал, следует учитывать возможный вред при монтаже полотен. При распиле мелкая крошка и пыль, попавшая в дыхательные пути, может вызвать аллергическую реакцию или лёгочное заболевание.

Если решение принято в пользу функционального материала, необходимо знать, какой вид наиболее безопасен. В составе шифера используются разные замесы для получения красивой волны:

  1. Пластик – 70% однородного поливинилхлорида. Для придания крепости изделию используется добавка из стекловолокна. Токсичных веществ материал не выделяет.
  2. Битумная продукция – производится из синтетических и битумных смол, целлюлозы и минеральных наполнителей. Благодаря наличию природных компонентов, полотна является экологически безопасными.
  3. Фиброцемент как основа с примесью цемента, ПВА, целлюлозы и известняка. Пользуется спросом за счёт отсутствия в составе асбеста.
  4. На основе металла шифер изготовляется с двусторонним оцинкованием, а внутренняя часть дополнительно лакируется. Материал, произведённый по нормам ГОСТа и ТУ, считается неопасным.
  5. Резиновая продукция – относительно новый вид изделий на строительном рынке. Изготавливается шифер из резинотканевых отходов и крученной нетоксичной нити.
  6. Марки из асбеста на 85% состоят из портландцемента М300, 400 и 500, а также 15% волокна с добавлением воды и хризолита.

Для монтажа шифера не рекомендуется использовать гвозди, т. к. они приводят к расколу листа.

Безопасность использования в строительстве

Основные волнения по поводу экологичности и возможного вреда вызывают асбестовые марки шифера. В качестве сырья для листов используется асбест, портландцемент и стандартный цемент с добавлением воды. Тонковолокнистые минералы класса силикат выполняют функцию скрепления. От данного компонента зависит прочность конструкции к ветровым и другим типам нагрузок. Равномерно распределённый асбест по всей поверхности листа занимает не более 18% от его состава.

Читайте также:
Сплит-системы: описание, виды и эксплуатация

Ввиду этого мнения о безопасности шифера расходятся. Одни потребители уверяют, что материал вреден для здоровья и может вызвать серьёзные заболевания. Другие покупатели предполагают, что этот миф создали производители премиального кровельного покрытия.

Наличие асбеста в составе шифера действительно может спровоцировать негативную реакцию при условии попадания в организм. Однако волокна, используемые в производстве, делятся на две категории – аризотил и амфибол. Вредное воздействие на здоровье человека оказывает амфибольный вид шифера. Однако его задействуют в смеси только на территории Европы за неимением первого вещества в открытом доступе. Таким образом, кровельный материал российского производства является безопасным.

Плоский шифер: прессованный и непрессованный, размер листа, монтаж

Сколько ни копи деньги, а для ремонта и строительства их всегда недостаточно. В процессе часто возникает вопрос о недорогих, но качественных, надежных и долговечных материалах. Очень редко можно найти вариант, который всем этим критериям удовлетворяет. Но один из таких — плоский шифер. Этот материал еще называют плита асбоцементная, ацеит (правильно «АЦЭИД»), хризотилцементный лист или плита.

Из чего делают шифер

Листовой шифер делают из смеси цемента (80-85%) и асбестовых волокон (15-20%). В смесь добавляют немного воды, прокатывают через вальцы, формируя пласт нужной толщины. Далее излишки обрезаются по размерам. То есть, шифер — это армированный асбестом бетон. Также его можно назвать и асбестоцементным материалом. По старому ГОСТу плоский шифер назывался «плита асбестоцементная». Из него во многих домах старой постройки сделаны перегородки санузлов. Так что материал проверенный годами.

Плоский шифер — это цемент, в который добавлено армирующее вещество — хризотил. В новом стандарте он описан как хризотилцементный лист

Многие опасаются вредности шифера, так как в качестве армирующего элемента применяются асбестовые волокна. Но асбест — это общее название группы веществ. В этой группе есть как вредные (амфиболовые асбесты), так и нейтральные вещества — хризотил. При производстве шифера используют именно хризотил. Это требование прописано в стандарте и нарушать его нет необходимости, так как стоит он не дороже и характеристики имеет хорошие.

Прессованный и непрессованный: в чем разница

Если говорить конкретно о гладком или плоском шифере, то он есть двух типов: прессованный и непрессованный. Все дело в том, что сформированные из влажной смеси листы «доходят» до нужной степени влажности двумя способами. Первый — просто набирают прочность в естественных условиях, как обычный бетон. Их выдерживают в камерах с определенным уровнем влажности для набора крепости, а затем высушивают. Второй способ — сформированный лист прессуется, а затем выдерживается для набора прочности.

Разница в характеристиках прессованного и непрессованного плоского шифера

Чем в результате отличается прессованный плоский шифер от непрессованного? При равной толщине листа прессованный имеет:

  • Большую плотность, более высокую прочность. Например, 23 МПа против 18 МПа.
  • Лучше переносит ударные нагрузки.
  • Более высокую морозостойкость. Но тут надо учитывать, что после исчерпания ресурса он быстро теряет свойства — до 40% от исходного значения. Непрессованный рассчитан на меньшее количество циклов разморозки/заморозки, но после исчерпания ресурса прочность его снижается незначительно — на 10-15%.
  • Прессованные листы имеют лучшую геометрию.
  • Стоит больше, так как задействовано дополнительное оборудование, из-за этого повышается энергоемкость производства.

В общем, если материал должен будет выдерживать нагрузки, можно либо брать непрессованный, но большей толщины, либо прессованный. Обращайте также внимание на морозостойкость. Чем она выше, тем дольше прослужит плоский шифер.

Свойства, недостатки и преимущества

Шифер был придуман более 100 лет назад. Технология его производства проста, материал получается недорогой, а свойства имеет очень даже неплохие:

  • Огнестойкий. Не горит и горение не распространяет.
  • Экологически безвредный.
  • Легко монтируется.
  • Хорошо обрабатывается (режется).

Популярный универсальный листовой материал — и как конструкционный, и как отделочный. Применяется для стен, потолка, для пола и наружной отделки зданий, для заборов и возведения легких построек

  • Работать можно в любую погоду.
  • Может иметь большие размеры, так как не очень много весит.
  • Устойчив к агрессивным средам.
  • Нормально переносит атмосферные и температурные воздействия.
  • К недостаткам стоит отнести невзрачность «базового» варианта. Серый материал сегодня мало кому нравится. Есть, конечно, крашенные в массе или краской. Но по цене они более дорогие. Хотя, всегда остается вариант — покрасить самостоятельно. Еще один минус плоского шифера — плохая переносимость точечных нагрузок. Если по листу стукнуть, он расколется. Еще момент — он плохо держит длительные изгибающие нагрузки. Поэтому, когда делают заборы из шифера, крепят листы не жестко, а через прокладки, чтобы была возможность компенсировать возникающие напряжения.

    Читайте также:
    Формы пластиковых окон для частного дома

    Размеры и вес

    Требования и характеристики плоского шифера определены новым ГОСТом 18124-2012. Первое — листы плоского шифера должны иметь прямоугольную форму. Допустимое отклонение — не более 5 мм на одной грани. Отклонение от плоскости — 4 мм для прессованных, 8 мм для непрессованных. Второе — кромки должны быть прямыми. Может быть небольшой скос — не более 5 мм.

    Размер листа плоского шифера определен стандартом

    Тот же нормативный документ определяет размеры плоского шифера:

    • Длина листа может быть 1200 мм, 1750 мм, 2500 мм, 3000 мм, 3600 мм. Допустимое отклонение ±10 мм.
    • Ширина листа 1120 мм, 1200 мм, 1500 мм, 1570 мм. Возможное несовпадение с заявленной шириной ‡6 мм.
    • Толщина плоского шифера может быть от 4 мм до 40 мм, но это по согласованию. Стандартами определены следующие величины:
      • 6 мм и 7 мм (отклонение +0,7 мм или -0,2 мм);
      • 8 мм, 10 мм, 12 мм (может быть толще на 1 мм, тоньше на 0,6 мм).

    Примерный вес листа плоского шифера в зависимости от габаритов, толщины и способа производства

    Вес листа плоского шифера зависит от его плотности, способа производства (прессованный или непрессованный) и размеров. В стандарте даны справочные данные по весу листа каждого из описанных форматов. Как видно из таблицы, прессованный, при тех же габаритах, весит на 5-10% больше.

    Область использования

    Плоский шифер применяться может очень широко. По сравнению с другими листовыми материалами он имеет невысокую стоимость, а характеристики неплохие. Гладкий листовой шифер применяют:

    • Для обшивки стен внутри здания и снаружи. Назначение зданий — любой. Стандарт допускает использование асбестоцементных плоских листов в жилых, административных, промышленных зданиях.
    • Для подшивки потолка.
    • Для обшивки вентилируемых фасадов.
    • Как съемная и несъемная опалубка для бетонных работ.
    • При сухой стяжке пола, укладке на черновое покрытие пола под плитку.

    Если окрашенный в массе плоский асбестоцементный лист (шифер) нарезать на небольшие форматы, кровля получается очень привлекательной, а цена смешной

  • Для устройства кровель.
  • В производстве сэндвич-плит.
  • Для заборов.
  • Для ограждения балконов и лоджий.
  • Для устройства бытовых и хозяйственных построек: для летнего душа, обшивки сараев.
  • При устройстве высоких грядок, планировании грядок и других работах по благоустройству участка.
  • В общем, плоский шифер — один из самых бюджетных листовых материалов, который можно применять в условиях высокой влажности или на улице. Он может иметь вполне презентабельный вид, так как есть не только серый, но и крашеный. Причем есть крашенный в массе, есть — после изготовления. Крашенный в массе и на спиле/сколе имеет тот же цвет. Краситель добавляют в смесь до начала формовки листов. Цвет более стабилен, но он не яркий, так как основа материала — портландцемент.

    Окрашенный в заводских условиях плоский шифер может быть глянцевым или матовым. Для отделки фасадов стали делать покрытие из фактурной штукатурки

    Окрашенный готовый листовой шифер отличается более яркими цветами. Бывает и с глянцевой поверхностью. Но на местах распилов/срезов/сколов виден исходный серый цвет. Для улучшения эстетики срезы желательно подкрасить.

    Шифер можно красить самостоятельно. Есть специальная краска для шифера, но вполне подойдет и краска для бетона (ведь шифер, по сути — тот же бетон). Можно использовать эмали или акриловые краски, но надо смотреть, чтобы ими можно было красить бетон/цемент.

    Особенности монтажа

    Чаще всего крепят плоский шифер к обрешетке при помощи гвоздей или саморезов, винтов. Гвозди есть специальные — шиферные. Они имеют довольно большие округлые шляпки. Стержень гвоздя может быть обычным или ершеным. Последние применяют, если в регионе высокие ветровые нагрузки. Можно также использовать кровельные саморезы. Они могут быть окрашены или можно шляпки покрасить самостоятельно. Очень важно не затягивать крепеж до упора, а оставлять некую свободу перемещения. Это уменьшит возможность появления трещин.

    Крепеж для плоского шифера

    Перед установкой крепежа в листе сверлят отверстия, диаметр которых не менее диаметра стержня крепежа. Минимальное расстояние от кромки листа — 60 мм, шаг установки зависит от места эксплуатации и планируемых нагрузок. Сверлить лучше победитовым сверлом на средних или высоких оборотах.

    Расчертить четкие полосы — линии реза, смочить и можно резать

    Режется плоский шифер дисковой пилой, УШМ (болгаркой) с алмазным диском или диском по бетону. При использовании электроинструмента процесс идет быстро, но очень много пыли, так что работать надо только на улице и в респираторе. Для уменьшения пыли плоский шифер смачивают водой. Если есть возможность — за несколько часов на предполагаемое место реза уложите мокрую тряпку. Можно просто налить воды и резать мокрый материал, но так больше шансов испортить ту же болгарку или дисковую пилу.

    Шифер — технические характеристики и размеры, способы укладки и расчет количества шифера для крыши, разновидности

    Обустройство крыши – это одно из главных частей постройки дома, ведь крыша осуществляет функции по защите сооружения от атмосферных осадков в виде дождя, снега и града.

    Также, крыша – это самый видимый элемент дома, его видно невооруженным глазом, поэтому довольно важно сделать ее красивой. Подбирая материалы для крыши вам нужно выбирать только качественные, подходящие для вашего дома материалы.

    Устройство крыши дома из шифера – это довольно популярный способ, помимо высоких показателей износоустойчивости и способности защитить помещение от осадков, некоторые виды шиферного материала, которых довольно много, обладают довольно красивой, благородной и богатой внешностью.

    Содержание

    Какие разновидности шиферного материала существуют

    Чаще всего, вспоминая данный материал, человек представляет себе волновой шифер, который является самым распространенным среди всех видов. Но, существует немалое количество видов этого материала, отличающиеся друг от друга составом, размерами, цветами и рядом других параметров.

    Подробнее рассмотрим каждый вид:

    • Шифер, который изготавливают из сланца. Этот вид кровельного материала имеет прямоугольную форму, выполняется в виде цельной пластины. Стоит отметить, что такой шифер не очень популярен именно для обустройства крыши, из-за его красивого внешнего вида его чаще применяют при декорировании. Сланец обладает свойствами высокой прочности, экологичности и долгим сроком эксплуатации до восьми десятилетий.
    • Шиферный материал, изготавливаемый из асбестоцементных материалов. Данная разновидность очень популярна, ее можно увидеть на многих крышах. Асбесты и цементные смеси, которые присутствуют в составе асбестоцементного шифера, позволяют ему быть прочным и иметь низкие показатели теплопроводимости, а также хорошо поглощать звуковые волны. Но при всем этом, такой шифер имеет большой вес и довольно легко повреждается.
    • Шифер, изготавливаемый из фиброцементных материалов. Этот вид отличается тем, что с помощью цементных смесей, здесь выполняется армирование, а также его производят с использованием минеральных наполнителей. Имея довольно низкую цену, такой материал отличается своей пластичностью и износоустойчивостью, устойчивостью к ультрафиолетовым лучам, устойчивостью к гниениям и появлениям грибка.
    • Шифер, изготавливаемый из полимерпесчаных материалов. В состав этого вида входят смесь из цемента и песок. Отличается простотой в эксплуатации, маленькой массой и устойчивостью к механическому воздействию и нагрузке, экологичностью и долговечностью. Такой вид шифера может прослужить вам до пятидесяти лет.
    • Шиферный материал, изготавливаемый из поликарбонатного материала. Это инновационное решение на рынке, такой шифер имеет прозрачную поверхность, что обуславливает высокую светопропускаемость. Из-за такой особенности, данный вид шифера не использует при кровле спальных сооружений, чаще всего его можно увидеть на крышах сооружений, которые служат для отдыха или технических помещений. Отличается маленьким весом и высокой прочностью.
    • Шифер, изготавливаемый из композитного материала (в основном синтетики и полимеров). Обладает большим количеством подвидов. Но всех их объединяет способность к светопропускаемости, гибкости, эластичности, а также все они имеют легкий вес.

    Шифер, изготавливаемый из металлических материалов. Чаще всего здесь применяется алюминий или сталь. В отличие от стандартных, цементных и песковых видов шифера, металлический вид обладает устойчивостью к огню и к коррозии. Служить такой шифер может довольно долго от двадцати до сорока лет.

    На какие параметры стоит обратить внимание

    Решив обустроить крышу своего дома шифером, вам нужно знать, какими техническими параметрами он должен обладать.

    Подробнее рассмотрим перечень важных характеристик материала:

    • Первое, на что стоит обратить внимание – это количество волн. Выделяются пятиволновые, шестиволновые, семиволновые и восьмиволновые виды шифера. Именно восьмиволновой шифер обладает высокой популярностью, ведь он имеет самую большую площадь. Также, стоит отметить, что существуют и плоские виды шифера, которые не имеют волн.
    • Размер шифера. Данный параметр будет зависеть от количества волн. Стоит сказать, что стандартная толщина данного материала должна составлять семь с половиной миллиметров.
    • Масса шифера. Эти параметры также зависят от волн, стандартная масса восьмиволновых листов должна составлять от двадцати пяти до тридцати пяти килограмм.
    • Цвета. Данный показатель зависит от производителя и от вида шиферного материала.
    • Водоустойчивость.
    • Износоустойчивость.
    • Устойчивость к перепадам температур.
    • Для многих также важен вопрос о том, сколько стоит шифер того или иного вида.

    Как закрепить шиферный материал

    Для правильного и качественного монтажа шифера на крыше, вам необходимо изучить список требуемых инструментов и пошаговую инструкцию.

    Рассмотрим перечень инструментов:

    • Ножовка для металла или дерева.
    • Болгарка с дисками под бетонный материал.
    • Лобзик.
    • Роторайзер.
    • Сабельная пила.

    Процесс закрепления состоит из нескольких этапов, в которые входят:

    • Обустройство обрешеток.
    • Подготовительные мероприятия, такие как раскройка шиферных листов.

    Непосредственно закрепление с помощью специальных материалов и инструментов.

    Плюсы и минусы

    Данный кровельный материал, как и все другие, имеет ряд преимуществ и недостатков.

    Среди плюсов принято выделять:

    • Высокие показатели устойчивости к перепаду температуры и пожароустойчивость.
    • Устойчивость к коррозиям.
    • Возможность отремонтировать материал.
    • Низкие показатели звукопроводности.
    • Низкая стоимость.
    • Очень простой процесс монтажных работ.
    • Износоустойчивость.
    • Долгие сроки эксплуатации.

    Среди минусов можно выделить:

    • Необходимость в качественном обслуживании шифера.
    • Необходимость в установке гидроизоляций.
    • Большие показатели массы.
    • Довольно хрупкий материал.

    Как правильно подобрать шифер

    Специалисты охотно делятся своим опытом и дают некоторые рекомендации, среди которых:

    • Выбирайте проверенных временем и другими потребителями производителей, которые имеют высокую репутацию на рынке.
    • Приобретайте материал с запасом.
    • Для крыш со сложными формами нужно подбирать эластичные виды шифера.
    • Стоит приобретать уже окрашенные виды шифера, чем красить его самим.

    Соблюдайте технику безопасности при установке.

    Что такое защитное зануление и где оно применяется

    Защитное зануление — система, в которой токопроводящие части оборудования, не находящиеся в норме под напряжением, соединены с нейтралью. В защитных целях преднамеренно создается соединение между открытыми проводящими элементами глухозаземленной нейтрали (в сетях трехфазного тока).

    В сетях однофазного тока создают контакт с глухозаземленным выводом источника однофазного тока, а в случае с постоянным током — с глухозаземленной точкой источника тока. Хотя зануление характеризуется серьезными недостатками, система по-прежнему широко применяется во многих сферах для защиты от тока.

    Разница между занулением и заземлением

    Между занулением и заземлением имеются отличия:

    1. В случае заземления лишний ток и появившееся на корпусе напряжение перенаправляются в грунт. Принцип действия зануления основан на обнулении на щитке.
    2. Заземление более эффективно с точки зрения защиты человека от удара током.
    3. Заземление основано на быстром и значительном уменьшении напряжения. Тем не менее, какое-то (уже неопасное) напряжение остается.
    4. Зануление заключается в создании соединения между металлическими деталями, в которых отсутствует напряжение. Принцип зануления основан на умышленном создании короткого замыкания при пробое изоляции или попадании тока на нетоковедущие части электроустановок. Как только происходит замыкание, в дело вступает автоматический выключатель, перегорают предохранители или срабатывают иные средства защиты.
    5. Заземление чаще всего используют на линиях с изолированной нейтралью в системах типа IT и TT в трехфазных сетях, где напряжение не превышает тысячи вольт. Заземление применяют при напряжении более тысячи вольт с нейтралью в любом режиме. Зануление используют в глухозаземленных нейтралях.
    6. При занулении все элементы электроприборов, не находящиеся в стандартном режиме под напряжением, соединяются с нулем. Если фаза случайно коснется зануленных элементов, резко увеличивается ток и отключается электрооборудование.
    7. Заземление не зависит от фаз электроприборов. Для организации зануления требуется соблюдение жестких условий подключения.
    8. В современных домах зануление применяется редко. Однако этот способ защиты все еще встречается в многоэтажных домах, где по каким-либо причинам нет возможности организовать надежное заземление. На предприятиях, где имеются повышенные нормативы по электробезопасности, основной способ защиты — зануление.

    Обратите внимание! Для правильного определения нулевых точек и выбора способа защиты понадобится помощь квалифицированного электрика. Сделать заземление, собрать элементы контура и установить его в грунт можно и своими руками.

    Схема работы

    Как было сказано выше, зануление основано на провоцировании короткого замыкания после попадания фазы на металлический корпус электроустановки, соединенной с нулем. Так как сила тока возрастает, подключается защитный механизм, отключающий электропитание.

    По нормативам Правил установки электроустановок в случае нарушения целостности линии она должна отключаться автоматически. Регламентируется время на отключение — 0,4 секунды (для сетей 380/220В). Для отключения используются специальные проводники. Например, в случае однофазной проводки задействуется третья жила кабеля.

    Для правильного зануления важно, чтобы петля фазы-нуля характеризовалась невысоким сопротивлением. Так обеспечивается срабатывание защиты за нужный промежуток времени.

    Организация зануления требует высокой квалификации, поэтому такие работы должны выполнять только квалифицированные электрики.

    На схеме ниже показан принцип работы системы:

    Область применения

    Защитное зануление используют в электроустановках с четырехпроводными электросетями и напряжением до 1 кВт в следующих случаях:

    • в электроустановках с глухозаземленной нейтралью в сетях TN-C-S, TN-C, TN-S с проводниками типов N, PE, PEN;
    • в сетях с постоянным током и заземленной средней точкой источника;
    • в сетях с переменным током и тремя фазами с заземленным нулем (220/127, 660/380, 380/220).

    Сети 380/220 допускаются в любых сооружениях, где зануление электроустановок обязательно. Для жилых помещений с сухими полами зануление обустраивать не нужно.

    Электрооборудование 220/127 используются в специализированных помещениях, где отмечается повышенный риск поражения током. Такая защита необходима в условиях улицы, где занулению подлежат металлические конструкции, к которым прикасаются работники.

    Проверка эффективности зануления

    Чтобы проверить, насколько действенно зануление, нужно сделать замер сопротивления петли фаза-ноль в наиболее отдаленной от источника электропитания точке. Это даст возможность проверить защищенность в случае воздействия тока на корпус.

    Сопротивление измеряется с использованием специализированной аппаратуры. Измерительные приборы оснащены двумя щупами. Один щуп направляют на фазу, второй — на зануленную электроустановку.

    По результатам измерений устанавливают уровень сопротивления на петле фазы и нуля. С полученным результатом рассчитывают ток однофазного замыкания, применяя закон Ома. Расчетное значение тока однофазного замыкания должно быть равно или превышать ток срабатывания защитного оборудования.

    Предположим, что для предохранения электроцепи от перегрузок и коротких замыканий подключен автомат-выключатель. Ток срабатывания составляет 100 Ампер. По результатам измерений сопротивление петли фазы и нуля равно 2 Ом, а фазовое напряжение в сети — 220 Вольт. Делаем расчет тока однофазного замыкания на основе закона Ома:

    I = U/R = 220 Вольт/2 Ом = 110 Ампер.

    Поскольку расчетный ток короткого замыкания превышает ток мгновенного срабатывания автомата-выключателя, делаем вывод об эффективности защитного зануления. В противном случае понадобилась бы замена автомата-выключателя на прибор с меньшим током срабатывания. Другой вариант решения проблемы — сокращение сопротивления петли фаза-ноль.

    Нередко при проведении расчетов ток срабатывания автомата умножают на коэффициент надежности (Кн) или коэффициент запаса. Причина в том, что отсечка не всегда равна указанному показателю, то есть возможна определенная погрешность. Поэтому использование коэффициента позволяет получить более надежный результат. Для старого оборудования Кн составляет от 1,25 до 1,4. Для новой техники применяется коэффициент 1,1, так как такие автоматы работают с большей точностью.

    Опасность зануления в квартире

    Скачки напряжения опасны как для людей, так и для бытовой техники в квартирах. В многоквартирных домах одной из квартир достанется низкое напряжение, а другой — высокое. Если в розетке квартиры случится обрыв нулевого проводника, при следующем включении электроустановки (например, бойлера) человека ударит током.

    Особенно зануление опасно в двухпроводной системе. К примеру, при проведении электромонтажных работ электрик может заменить нулевой проводник на фазный. В электрощитах эти жилы далеко не всегда обозначены определенным цветом. Если замена произойдет, электрическое оборудование окажется под напряжением.

    По нормативам Правил установки электроустановок на бытовом уровне зануление не разрешается для использования в бытовых целях именно по причине его небезопасности. Зануление эффективно только для защиты больших объектов производственного назначения. Однако, несмотря на запрет, некоторые люди решаются на установку зануления в собственном жилье. Происходит это либо по причине отсутствия иных методов решения проблемы, либо из-за недостаточности знаний по данному предмету.

    Зануление в квартире технически осуществимо, но эффективность такой защиты непредсказуема, как и возможные негативные последствия. Далее рассмотрим ряд ситуаций, которые возникают при наличии зануления квартире.

    Зануление в розетках

    В некоторых случаях защиту электроприборов предлагают выполнить путем перемычки клеммы розеточного рабочего нуля на защитный контакт. Такие действия противоречат пункту 1.7.132 ПУЭ, поскольку предполагают задействование нулевого провода двухпроводной электросети в качестве как рабочего, так и защитного нуля одновременно.

    На вводе в жилое помещение чаще всего расположено устройство, предназначенное для коммутации фазы и нуля (двухполюсный прибор или так называемый пакетник). Коммутация нуля, используемого как защитный проводник, не допускается. Иными словами, запрещено использовать в качестве защиты проводник, электроцепь которого включает коммутационный аппарат.

    Опасность защиты с применением перемычки в розетке состоит в том, что корпуса электроустановок в случае повреждения нуля (независимо от участка) попадают под фазное напряжение. Если нулевой проводник обрывается, электроприемник перестает функционировать. В этом случае провод кажется обесточенным, что провоцирует на необдуманные действия со всеми вытекающими последствиями.

    Обратите внимание! При обрыве нуля источником опасности становится любая техника в квартире или в частном доме.

    Перепутаны местами фаза и ноль

    При проведении электромонтажных работ в двухпроводном стояке своими руками существует немалая вероятность путаницы между нулем и фазой.

    В домах с двухпроводной системой жилы кабелей лишены отличительных признаков. При работе с проводами в этажном щитке электрик может попросту ошибиться, перепутав фазу и ноль местами. В результате корпуса электроустановок попадут под фазное напряжение.

    Отгорание нуля

    Обрыв нуля (отгорание нуля) часто случается в зданиях с плохой проводкой. Чаще всего проводка в таких домах проектировалась, исходя из 2 киловатт на единицу жилья. На сегодняшний день электропроводка в домах старого типа не только износилась физически, но и не способна удовлетворить возросшее количество бытовой техники.

    При обрыве нуля дисбаланс возникает на трансформаторной подстанции, от которой питается многоквартирное здание. Перекос возможен в общем электрическом щите здания или в этажном щитке дома. Следствием этого станет беспорядочное понижение напряжения в одних квартирах и повышение — в других.

    Низкое напряжение губительно для некоторых видов электробытовой техники, в том числе кондиционеров, холодильников, вытяжек и прочих аппаратов, оснащенных электрическими двигателями. Высокое напряжение представляет опасность для всех видов электроустановок.

    Альтернатива занулению

    В подсистеме TN-S зануление защитного проводника PE осуществляется лишь на одном участке — на контуре заземления трансформаторной подстанции или электрогенератора. В этой точке разделяется PEN-проводник, и далее защита и рабочий ноль нигде не встречаются.

    В такой схеме энергоснабжения заземление и зануление органично взаимодействуют, создавая условия для высокой электробезопасности. Однако в системах, где нейтраль изолирована (IT, TT), зануление не используется. Электрическое оборудование, работающее в рамках системы TT и IT, заземляется за счет собственных контуров. Так как система IT предполагает подачу питания только специфическим потребителям, рассматривать такой способ организации защиты в жилых домах не имеет смысла. Единственная альтернатива неправильному, а потому опасному занулению шины PE — система TT. Особенно актуальна такая система, потому что переход на технически прогрессивные системы TN-S, TN-C-S технически и финансово затруднен для домов, чей возраст превышает 20 – 25 лет.

    Электрическая сеть, построенная по стандарту TT, призвана обеспечивать качественную защиту от попадания под напряжение нетоковедущих частей. Все работы по организации зануления должны осуществляться в соответствии с нормами, указанными в пункте 1.7.39 Правил установки электроустановок.

    Что такое зануление и для чего оно нужно?

    В этой статье поговорим о том, что такое зануление, где оно применяется, а также об основных ошибках при его устройстве. Тема непростая, на форумах ведутся постоянные дебаты.

    Интересно то, что часто даже электрики не могут правильно сказать, чем отличается зануление от заземления. Давайте разбираться. Для начала посмотрим, что о занулении говорится в ПУЭ.

    Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока

    Попросту говоря, зануление – это соединение корпуса электрического прибора с нулевым проводом.

    Теперь посмотрим, что говорит нам ПУЭ про заземление

    Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.

    Простыми словами, заземление – это соединение корпуса электрического прибора с заземлителем. Заземлитель – это конструкция из металлических штырей, вбитая в землю.

    Теперь давайте посмотрим, как устроены самые распространенные системы электроснабжения многоквартирных домов.

    Старая, советская система TN-C

    Более современная система TN-C-S

    В обеих схемах используется совмещенный нулевой проводник PEN, который заземляется на трансформаторной подстанции.

    Основное различие между ними в том, что в TN-C-S происходит разделение совмещенного проводника на рабочий ноль и защитный проводник. Это делается в во вводном общедомовом щите (ВРУ). При этом обязательно производится повторное заземление.

    Если внимательно посмотреть на схемы, становится понятно, что рабочий ноль всегда соединен с землей, то есть заземлен. И возникает вопрос: а в чем, собственно, разница между заземлением и занулением? Ведь соединив корпус прибора с рабочим нулем, мы фактически соединяем его и с землей.

    На самом деле, разница есть. Она заключается в принципе действия.

    Заземление предназначено для того, чтобы отводить ток на землю. Таким образом уменьшается опасное напряжение на корпусе прибора или устройства.

    Зануление предназначено для создания эффекта короткого замыкания при пробое фазы на корпус. При этом срабатывает автомат и отключает аварийную линию.

    Таким образом, зануление и заземление в системах TN работает одновременно, так сказать, в одном флаконе. Поэтому, 3-й защитный контакт в евророзетках в системах TN является и заземляющим и зануляющим.

    Исходя из этого, правильно говорить о совмещенном проводнике PEN, рабочем нулевом проводнике N и защитном проводнике PE. При этом, даже электрики не всегда понимают разницу между PE и N, а она весьма существенная.

    Обычно, когда какой-нибудь «электрик дядя Вася» говорит о занулении, то подразумевает разного рода колхоз типа перемычек в розетках и тому подобном соединении защитного провода с нулевым. И это опасно.

    Неправильное зануление может вместо защиты может стать причиной трагедии.. А встречается такая псевдозащита очень, очень часто.

    Давайте разберемся, как правильно делается защитное зануление и чего делать категорически нельзя.

    Запомните, разделение совмещенного проводника на рабочий ноль и защитный ноль должно производиться в общедомовом вводном устройстве (ВРУ). И уже оттуда защитный проводник должен идти к этажным щитам, а от них в каждую квартиру.

    Таким образом, мы получаем пятипроводный стояк: 3 фазы, рабочий ноль и защитный ноль. В этом случае речь о так называемом занулении не идет, поскольку в каждую квартиру приходит отдельный защитный провод (системы TN-C-S и TN-S) . Его и нужно подключать к третьему контакту розеток.

    В старых домах с немодернизированной проводкой обычно идет четырехпроводный стояк: 3 фазы и совмещенный ноль PEN (система TN-C). Вот тут-то и начинается полнейший бардак и жуткие косяки.

    Начинается все в этажном щите. Часто в нем делают самостоятельное разделение PEN на PE и N.

    Этот вариант имеет право на жизнь, но только при соблюдении важных правил. Вот главные из них:

    Правило 1. В однофазных цепях разделять нулевой провод запрещено (ПУЭ – 1.7.132).

    Как определить, какая сеть в вашем доме? В относительно нестарых домах подъездные стояки четырехпроводные: три фазы и один совмещенный ноль (PEN). То есть используется трехфазные стояки, соответственно трехфазная цепь.

    В очень старых домах, сталинках и хрущевках, часто используется двухпроводный стояк, в котором только фаза и рабочий ноль. Отличительная особенность таких домов – отсутствие подъездных щитов. Стояки идут в шахтах между квартирами, а в самих квартирах специфические «горбатые» щитки. Вот в таких домах, как правило, используется однофазная сеть.

    Правило 2. Совмещенный проводник PEN должен быть сечением не менее 16 мм по алюминию или 10 мм по меди.

    То есть нулевой стояк должен быть сечением не меньше указанного. Во многих домах сечение меньше, в этом случае разделять совмещенный ноль на защитный и рабочий нельзя. Если у вас дом советской постройки с газовыми плитами, то в 80% случаев стояк в нем хилый.

    Правило 3. После разделения PEN на PE и N нельзя вновь их соединять.

    Здесь, думаю, пояснений не надо.

    Правило 4. Защитный проводник PE должен быть неотключаемым.

    То есть на него нельзя ставить автоматы и прочие разъединяющие устройства.

    Правило 5. Разделять PEN нужно ДО всех автоматов, рубильников, выключателей.

    Лучше сделать так: взять латунную шину и прикрутить ее винтами к щиту, чтобы между ними был контакт. От нулевого стояка через отдельный орех сделать отвод на эту шину. К шине подсоединить защитные провода PE из квартир.

    Если не выполнено хотя бы одно их этих правил, то это будет не защита, а опасный для жизни колхоз.

    Еще немного о том, чего делать нельзя

    1) Соединять перемычкой защитный и нулевой контакты в розетке. Это одна из самых опасных ошибок!

    При отгорании, повреждении или случайном отсоединении нуля, на корпусе всех приборов, подключенных к таким розеткам, сразу появится опасное фазное напряжение. В этом случае ни УЗО, ни автомат не сработают. Привет, смерть.

    Тот же эффект будет при случайной смене фазы и нуля.

    2) Сажать нулевой и защитный проводники на один винт в щитке

    PE и N обязательно должны быть на разных зажимах (шинах). Причем, каждый провод из отдельной квартиры должен быть зажат отдельным винтом.

    3) Занулять на незаземленный (незануленный) щит.

    Обычно все щиты имеют прямой контакт с нулевым или защитным стояком (занулены). Но иногда контакта нет, по разным причинам. Например, отвалился соединяющий провод. Зануление на такой щит может привести к появлению на его корпусе опасного напряжения.

    На практике, подобного рода косяки встречаются сплошь и рядом, в различных вариантах и сочетаниях. Могу посоветовать не полениться, изучить ПУЭ, а также не доверять свою проводку сомнительным личностям.

    Что такое зануление

    Что такое зануление: для чего оно нужно, как сделать

    Занулением называется искусственное соединение металлических частей электроприбора с глухозаземлённой нейтралью. Многие путают и не понимают, что такое зануление и заземление.

    Если объяснять простыми словами, то при заземлённом электроприборе, ток, попавший на его корпус, моментально уходит в землю, не причинив человеку какой-либо опасности. Зануление работает несколько иначе, и при появлении на корпусе электроприбора опасного напряжения, возникает короткое замыкание, на которое реагирует дифференциальный автомат.

    Чаще всего зануление используется на промышленных объектах, но встретит его можно и там, где отсутствует возможность монтажа заземления. Подробно об этом уже рассказывалось ранее на сайте elektriksam.ru , в статье — где взять заземление в многоквартирном доме.

    Что такое зануление

    Итак, зануление — это умышленное соединение металлических частей электроприбора с нейтральным проводником, попросту говоря, нулём. В том случае, если на корпус электроприбора попадёт фазовое напряжение, то, произойдёт замыкание, из-за которого сработают автоматические выключатели.

    Наглядная схема зануления видна на картинке. Здесь к корпусу электроприбора со значком заземления подведён нулевой проводник.

    Что лучше — зануление или заземление

    Если есть такая возможность, то, лучше смонтировать качественное заземление. Данная мера обезопасит работу электроприборов в доме и исключит риск поражения током при утечке фазы на корпус. Вся сложность создания зануления в том, что необходимо правильно рассчитать, куда лучше всего подключить защитный проводник.

    Кроме того, нужно понимать, что если произойдёт обрыв нуля, то зануление работать не будет. Тогда существует опасность поражения электрическим током. С заземлением такого не произойдёт, хотя его контур со временем и может прийти в негодность: повысится сопротивление или ухудшится контакт из-за коррозии.

    Как сделать зануление

    Для того чтобы сделать зануление в квартире, необходим как минимум один автоматический выключатель, который будет быстро реагировать на возникший сверхток. Появление сверхтока будет связано с коротким замыканием, которое произойдёт, в том случае, если занулить корпус водонагревателя или стиральной машины (при пробое и утечки фазы).

    При всем этом, мы бы настоятельно не рекомендовали делать зануление своими руками, и вот почему:

    • В случае отгорания нуля на корпус электроприбора может попасть фаза. Если дотронуться до электроприбора в тот момент, то удара электрическим током не избежать;
    • Если каким-то образом случайно поменяется ноль с фазой в электрощитке или на вводе, то корпус электроприбора, также, окажется под опасным напряжением;
    • Даже если зануление сделано правильно, никто не может гарантировать бесперебойную работу УЗО или автоматического выключателя. Что будет, если при коротком замыкании не сработает защитное устройство в квартире?

    В общем, перед тем, как сделать зануление, не лишним будет посоветоваться с грамотным электриком. Не стоит рисковать своей жизнью и окружающих людей, ведь с электричеством шутки плохи.

    Статья носит рекомендательный характер и ничему не призывает. В ней лишь рассказан принцип работы зануления и заземления. В любом случае, лучше всего будет отдать предпочтение качественному заземлению, поскольку сложностей с его монтажом никаких нет.

    Что такое зануление?

    1. Описание

    Сегодня нашу жизнь трудно представить без ежедневной эксплуатации всевозможных электрических приборов. Однако, практическое использование тока небезопасно без защитных систем. Возможны случаи, когда защитные устройства (пробки, автоматы и др.) могут не сработать, в результате чего происходит повреждение внутренней изоляции и возникает повышенное напряжение на металлическом корпусе оборудования. Для защиты человека от возможного поражения электрическим током в процессе эксплуатации электроприборов и бытовой техники, разработаны всевозможные защитные мероприятия, к числу которых относится и зануление. Данная статья написана с целью объяснить читателю, в чём заключается особенность зануления, как способа защиты электросетей, в каких случаях применятся и чем отличается от защитного заземления.

    Зануление используют для обеспечения электробезопасности систем с PEN, PE или N проводниками. К ним относят сети с глухозаземленной нейтралью: TN-C, TN-S и TN-C-S. Основное различие в организации зануления для указанных систем состоит в схеме соединения нулевых защитных и рабочих проводников.

    Система зануления TN-C

    Система зануления TN-C на сегодняшний день относится к устаревшей, так как преобладает в зданиях старого жилого фонда. Для нее характерно наличие совмещенного по всей длине нулевого защитного и нулевого рабочего проводника PEN. Используется для электроснабжения в трехфазных сетях. Запрещена для групповых и распределительных однофазных сетей. Данная система достаточно проста в организации, однако не обеспечивает достаточного уровня электробезопасности, что делает невозможным ее применение при строительстве новых зданий.

    Система зануления TN-C-S

    Представляет собой улучшенный вариант системы зануления TN-C для обеспечения электробезопасности в однофазных сетях. В точке разветвления трёхфазной линии на однофазные совмещенный PEN-проводник разделяют на PE- и N-проводники, подводя их к однофазным потребителям. Данная система зануления, при относительно небольшом удорожании, отличается более высоким уровнем безопасности.

    Система зануления TN-S

    Считается наиболее совершенной и безопасной схемой зануления. Принцип действия основан на разделении по всей длине нулевого защитного и нулевого рабочего проводников. К нулевому защитному проводнику PE присоединяют все металлические элементы электроустановки. Во избежание повторного заземления устраивают трансформаторную подстанцию, имеющую основное заземление.

    Электробезопасность при занулении

    Используя схему защитного зануления важно учитывать, что ток при коротком замыкании должен достигать значения, достаточного для срабатывания электромагнитного расцепителя автоматического выключателя или плавления вставки предохранителя. В противном случае ток замыкания свободно будет протекать по электрической цепи, что приведет к увеличению падения напряжения на каждом элементе электрической цепи и на всех зануленных элементах электроустановки до величины, при которой вероятность поражения током от корпуса прибора многократно возрастет. Получается, что надежность системы зануления определяется по большей части надежностью используемого нулевого защитного проводника, к которому соответственно предъявляют повышенные требования см. пункты 1.7.121 – 1.7.126 ПУЭ-7. Тщательно проложенный нулевой провод должен отличаться окраской в виде желтых полос по зеленому фону. Кроме того, необходимо постоянно осуществлять контроль за исправностью его состояния. К нулевому проводу запрещается монтировать средства защиты электроустановок, которые при срабатывании могут привести к его повреждению. Соединения нулевых проводов между собой и с металлическими элементами электроустановки, доступными для прикосновения пользователям, должны гарантировать надежный контакт и иметь возможность для осмотра см. пункт 1.7.39, 1.7.40 ПУЭ-7. Значение сопротивления в болтовом соединении с частями электроустановки не должно превышать 0,1 Ом. Контроль за сопротивлением петли “фаза-нуль” осуществляют на этапе приемо-сдаточных работ, при капитальном ремонте и реконструкции сети, а так же в установленные в нормативно-технической документации сроки. Измерения в отключенной электроустановке проводят с помощью вольтметра-амперметра. Кроме того, постоянному контролю подлежит значение сопротивления заземления нейтрали и повторных заземлителей, зависимость времени действия автоматических устройств защиты от тока короткого замыкания.

    Для уменьшения удара током, в случае обрыва нулевого провода, рекомендуют выполнять повторные заземления сопротивлением не более 30 Ом через каждые 200 м линии и опор, для чего преимущественно используют естественные заземлители.

    2. Нормирование зануления

    Технические требования к организации систем защитного зануления определены следующими документами:

    • Правила устройства электроустановок (ПУЭ), глава 1.7,
    • ГОСТ Р 50571.5.54-2013 (пункт 543),
    • ГОСТ 12.1.030-81 (пункт 7).

    Механизм зануления основан на автоматическом отключении поврежденного участка сети, время которого не должно превышать значений согласно пункту 1.7.79 ПУЭ-7.

    Наибольшее допустимое время защитного автоматического отключения для системы TN

    Номинальное фазное напряжение Uo, В Время отключения, с
    127 0,8
    220 0,4
    380 0,2
    более 380 0,1

    Нулевой рабочий и защитный проводники должны обладать сопротивлением, достаточным для срабатывания защиты. Активные и индуктивные сопротивления проводников образуют полное сопротивление петли «фаза-ноль». Активные сопротивления проводников зависят от их длины, удельного сопротивления материала и сечения. Индуктивные сопротивления различают для проводников из меди и стали. В стальном проводе они находятся в обратной зависимости от плотности тока и отношения периметра к площади сечения проводника. Индуктивные сопротивления стальных проводников выше, чем медных. В пункте 1.7.126 ПУЭ-7 установлены наименьшие площади поперечного сечения защитных проводников для случаев, когда они изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

    Наименьшие сечения защитных проводников

    Сечение фазных проводников, мм2 Наименьшее сечение защитных проводников, мм2
    S ≤ 16 S
    16 35 S/2

    Двухпроводная линия, состоящая из рабочего и защитного проводников, образует один большой виток, сопротивление взаимоиндукции которого (рекомендуемое значение для расчётов – 0,6 Ом/км) зависит от длины линии, диаметра проводов и расстояния между ними. Сопротивление заземления нейтрали источника питания не должно превышать 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока см. пункт 1.7.101 ПУЭ-7. Увеличение тока короткого замыкания достигают путем понижения сопротивления трансформатора и петли, для чего используют схему треугольник-звезда. Обмотки мощных трансформаторов и так имеют не большое сопротивление. Меньшее сопротивление линий зануления достигают выполняя их короткими и простыми, увеличивая сечение проводников, заменяя стальные проводники на изготовленные из цветных металлов с малым индуктивным сопротивлением. Наибольшее сопротивление нулевого защитного провода не должно превышать удвоенного сопротивления фазного провода. Сокращая расстояние между ними, снижают внешнее индуктивное сопротивление. Уменьшение сопротивления повторных заземлителей и приближение их к узлам нагрузки, способствует понижению силы тока на зануленных частях оборудования. Соединение с нулевым проводником всех заземленных металлические конструкций здания повышает потенциал поверхности пола, на котором стоит человек, и тем самым значительно снижает напряжение его прикосновения до величины, примерно равной от 0,1 до 0,01 Uз.

    3. Применение зануления

    Зануление выполняют на промышленных объектах, часто с расположенным в здании источником питания (генератором или трансформатором), для обеспечения безопасности эксплуатации электроустановок различного назначения и повышения помехоустойчивости при их работе. Согласно требованиям пункта 1.7.101 ПЭУ-7 зануление электроустановок следует выполнять: – при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех электроустановках; – при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока – только в помещениях с повышенной опасностью, особо опасных и в наружных установках. Все электрооборудование промышленных объектов выводят на общий контур заземления и соединяют между собой металлической заземляющей шиной. Полный перечень частей, подлежащих занулению, представлен в главе 1.7 Правил устройства электроустановок (ПУЭ-7). Там же приведен список электрооборудования, преднамеренное зануление которого не требуется. Для электрозащиты объектов жилого фонда зануления практически не применяют. В новостройках заземление организованно централизованно. Современные электроприборы имеют вилку с тремя контактами. Один из контактов подключен к корпусу. Заземление для отдельно взятой квартиры состоит в присоединении к заземлителям корпусов и частей бытовых приборов. Потребность в занулении в таком случае отпадает. Дома старого жилого фонда, как правило, подключенные по системе TNC, могут и вовсе не иметь заземления. Модернизацией электросетей подобных домов должна заниматься специализированная электротехническая компания. Однако, зачастую сами жильцы таких домов прибегают к обустройству запрещенного в данном случае зануления, что является совсем не безопасным способом электрозащиты для жилого сектора. Требования к организации системы защитного зануления, как уже говорилось, определены в нормативных документах. Однако в процессе реализации данного способа защиты электросетей, нередко допускаются ошибки, препятствующие его прямому назначению. Ошибочно мнение о том, что лучше выполнять заземление на отдельный от нулевого проводника контур, ввиду отсутствия сопротивление длинного PEN-проводника от электроприбора до заземлителя подстанции. Однако на деле, сопротивление заземления оказывается гораздо большим, чем у длинного провода. При попадании фазы на заземлённый указанным способом корпус установки, ток замыкания может быть недостаточным для срабатывания автоматических средств защиты электросети. В данном случае напряжение на корпусе достигает опасной для пользователя величины. Даже при применении автоматического выключателя небольшого номинала, не удается обеспечить требуемое ПУЭ время автоматического отключения повреждённой линии от сети.

    4. Отличие зануления от заземления

    По своему назначению заземление и зануление во многом похожи – обеспечивают защиту пользователя электроустановки от поражения электрическим током. Однако способы и принцип организации такой защиты различны. Обеспечение электробезопасности сетей с использованием системы зануления подробно рассмотрено в предыдущих разделах статьи. Действие защитного заземления основано на принудительном соединении электроустановок с землей с целью снижения напряжения прикосновения до безопасной величины. Избыточный ток, поступающий на корпус электроустановки, отводится напрямую в землю (по заземляющей части). В качестве заземлителя устанавливают заземляющий контур треугольной конфигурации, сопротивление которого должно быть меньше, чем на остальных участках цепи. Отличие зануления от заземления состоит в следующем:

    • в способе обеспечения защиты электрических сетей: заземление -снижает напряжение прикосновения, зануление – отключает поврежденную электроустановку от сети, что практически исключает удар током и, с этой точки зрения, является более эффективным средством защиты для использования на промышленных предприятиях. Однако, если говорить о надежности защиты в процессе эксплуатации, то зануление уступает заземлению по причине большей вероятности повреждения целостности нулевого провода и возможного изменения сопротивления петли «фаза-нуль».
    • системами применения: заземление используют исключительно для защиты сетей с изолированной нейтралью (системы TT и IT), зануление – в сетях с глухо заземленной нейтралью TN-C, TN-S и TN-C-S, где присутствует PEN, PE или N проводники.
    • по типу обустройства: с точки зрения простоты и доступности обустройства, зануление представляет собой более сложный и трудоемкий способ защиты, требующий технических знаний и навыков для правильного определения способа и средней точки зануления. В случае защитного заземления соединяют отдельные детали токоприемника с землей, для чего достаточно применение инструкций к электроприборам.

    5. Заключение

    Роль зануления при работе с электроустановками на промышленных предприятиях трудно переоценить. Отключая поврежденную установку от сети в случае пробоя изоляции, зануление выступает надежным способом защиты человека от возможного поражения электрическим током. Для эффективного обеспечения электробезопасности, необходимо строгое соответствие конструкции элементов системы зануления рассмотренным нормативам, а так же тщательный и постоянный контроль за их состоянием. Использование зануления или заземления зависит от необходимого способа обеспечения защиты различных систем электрических сетей.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: