Характеристики шлаковаты и производство

Утеплитель шлаковата

  1. Технические характеристики шлаковаты
  2. Преимущества шлаковолокна
  3. Недостатки утеплителя
  4. Выбор шлаковаты

Чтобы в доме чувствовались комфорт и уют, ему требуется качественное утепление. Применяемая в качестве теплоизолятора минеральная вата, а именно шлаковата для утепления, поможет спастись в помещении от зимнего холода и летней жары. Приятным бонусом будет значительное сокращение расходов на утепление.

Технические характеристики шлаковаты

Для изготовления шлаковаты используются доменные шлаки, являющиеся отходами металлургического производства. Волокна утеплителя имеют длину около 1,5 см и толщину, не превышающую 12 микрон. Их прессуют с помощью связующего вещества, затем формуют в плиты.

Основное применение шлаковая вата находит при утеплении сухих временных сооружений. Способность быстро впитывать влагу ограничивает область использования этого термоизолятора. Он немного уступает другим видам минеральной ваты по определенным показателям – более высокая теплопроводность, слабое поглощение шумов. Шлаковая вата практически не выдерживает сильное нагревание, при температуре свыше 250° С начинает спекаться.

Преимущества шлаковолокна

Шлаковата может использоваться для утепления как ровных, так и округлых поверхностей. Не всем утеплителям доступна такая универсальность.

Правильная эксплуатация шлакового минерального утеплителя продлевает срок службы до 50 лет. При этом возможно сохранение звукоизоляционных и теплоизоляционных свойств.

Кроме этого, многих привлекает низкая стоимость шлаковаты.

Простота монтажа шлаковой ваты также немаловажна. Укладкой можно заниматься в гордом одиночестве, без специальных навыков и практического опыта. При невысокой цене самого теплоизолятора не придется тратиться и на услуги специалистов-монтажников.

Недостатки утеплителя

Недостатков у шлаковаты немного, но они достаточно существенны:

При попадании на волокна малейшего количества воды происходит образование кислоты, разрушительно воздействующей на металл. Следовательно, рекомендуется избегать использования шлаковаты на металлической поверхности в местах с повышенной влажностью.

Во время монтажа не исключено отслаивание мелких частиц. Поэтому все работы рекомендуется проводить в защитной одежде и респираторе.

Доменный шлак, лежащий в основе шлаковаты, не всегда отвечает экологическим требованиям. Это нужно учитывать при выборе утеплителя.

Шлаковолокно практически не переносит резких перепадов температуры. Это существенно сокращает сферу применения.

Выбор шлаковаты

Если выбор утеплителя выпал на шлаковату, то стоит оценить все ее свойства, как положительные, так и отрицательные.

Шлаковая вата оптимальна для утепления сухих поверхностей, но не предназначена для утепления водопроводных труб и фасадов зданий. Это обусловлено тем, что попадание влаги в структуру приводит к образованию кислоты, способной разрушать металл.

Нельзя забывать и о температурном режиме, при температуре выше допустимой качественные характеристики шлаковаты значительно снижаются.

В настоящее время шлаковая вата не пользуется большой популярностью, но при соблюдении правил эксплуатации вполне способна конкурировать с дорогостоящими утеплителями.

Под вопросом находится ее вредное влияние на здоровье в связи с наличием в составе фенолформальдегидных смол. Но, по словам производителей, концентрация вредных веществ в качественном теплоизоляторе минимальна и неопасна.

Огнеупорная вата в россии

Стекловата и шлаковата

Стекловата считается самой дешевой разновидностью негорючих минеральных ват. Главной особенностью такого материала является его колючая структура, поэтому работать с ним достаточно сложно. Укладка проводится в защитной одежде и респираторе.

Огнеупорная стекловата отличается высокой прочностью и эластичностью. Эти характеристики обеспечивают материалу его структура: толщина отдельного волокна варьируется в пределах 5-15 микрон, длина – 15-50 мм. Стеклянная минеральная вата, согласно условиям эксплуатации, способна выдержать воздействие пламени при температуре 500°. Но производители материала не рекомендуют допускать нагрева более 450°.

Шлаковата представляет собой утеплитель, полученный путем сшивания доменных шлаков и других компонентов. Минеральная вата этого типа плохо переносит воздействие воды.

При высокой влажности в помещении она из-за остаточной кислотности вступает в реакцию с металлическими изделиями. Из-за этой особенности шлаковата не применяется для отделки фасадов зданий, изоляции вентиляционных и иных труб.

В процессе монтажа утеплителя необходимо соблюдать осторожность, так как он быстро ломается. Шлаковата обеспечивает лучшую теплопроводность по сравнению типами материала

Но она, как и другие горючие виды минеральной ваты, быстро загорается: утеплитель способен выдерживать воздействие пламени при температуре в 250°

Шлаковата обеспечивает лучшую теплопроводность по сравнению типами материала. Но она, как и другие горючие виды минеральной ваты, быстро загорается: утеплитель способен выдерживать воздействие пламени при температуре в 250°.

При достижении этого показателя шлаковата начинает плавиться, что ведет к потере формы и снижению эксплуатационных характеристик. Поэтому огнеупорной ее можно назвать с натяжкой.

Каолиновая вата

Каолиновая вата относится к огнеупорным материалам, поскольку ее производят из натуральных огнеупорных глин и каолинов или из синтетических смесей каолинового и высокоглиноземистого составов.

Схема производства каолиновой ваты представлена ниже.

Если слой каолиновой ваты на выходе из камеры уплотняется валками до заданной объемной плотности и бока краев ковра ваты обрезаются специальным механизмом, то такой продукт называют рулонным материалом. Выпускают сухой рулон и влажный. В последнем случае вату смачивают термореактивными органическими полимерами. Влажный рулон легко принимает необходимый профиль футеровки печей. При разогреве благодаря твердению полимеров футеровка из рулонного материала приобретает прочность камня.

Теплоизоляция корпуса цилиндра газовой турбины ГТ-700-4 теплоизоля.

КТ-11 с наполнением каолиновой ватой , плотно облегающих внутренний цилиндр. Теплоизоляционный матрац в продольном и поперечном направлениях простегивается кремнеземной нитью.

Заполняют швы асбестовым шнуром или каолиновой ватой . Выполняют теплоизоляцию перекрытия и пол по перекрытию печи. Блоки монтируют автомобильным краном грузоподъемностью 10 т с укороченной стрелой.

В качестве исходных материалов используют: каолиновую вату , хлопковое волокно и стальную проволоку диаметром 0 1 мм. Текстильные материалы изготовляют по способу и на оборудовании, принятыми при производстве асбестовых технических изделий.

Схема керамического фильтра НИИОгаза. / — корпус фильтра. 2 — фильтровальные элементы. 3 — коллектор очищенного газа. 4 — собирающий коллектор очищенного газа. 5 — раздающий коллектор продувочного воздуха. 6 — мембранный клапан для отключения секций. 7 — мембранный клапан для подачи компремированного воздуха.

В промежуток между трубами закладывают кольцо из каолиновой ваты . Необходимую плотность соединения обеспечивают грузом.

Читайте также:
Утепление балкона керамзитом. Чем хорош этот материал в качестве утеплителя на пол

Для уменьшения теплоотвода во внешнюю среду камера термостата изолирована каолиновой ватой , которая заполняет пространство между камерой и корпусом термостата.

Техническая характеристика плит на крахмальной связке.

Представляют собой сетчатый чулок, наполненный минеральной, стеклянной или каолиновой ватой , а также отходами их производства.

Технические характеристики матов.

Представляют собой сетчатый чулок, наполненный минеральной, стеклянной или каолиновой ватой , а также отходами производства изделий из них.

Изоляция на фланцах выполняется матрацами из стеклянной ткани без заполнения каолиновой ватой . Конструкция изоляции верхней и нижней половин внутреннего цилиндра должна быть выполнена таким образом, чтобы при сборке и разборе цилиндра целостность изоляции не нарушалась.

Технические характеристики шлаковаты

  1. Теплопроводность — 0,46-0,48 Вт/(м*К).
  2. Максимальная температура использования — 250 градусов.
  3. Температура спекания — 250-300 градусов.
  4. Теплоемкость — 1000 Дж/(кг*К).
  5. Связующее вещество — 2,5-10%.
  6. Коэффициент звукопоглощения — 0,75-0,82.
  7. Вибростойкость — нет.
  8. Класс жаростойкости – НГ (не горит).
  9. Выделение вредных веществ — есть.
  10. Колкость — есть.

Технические параметры говорят о том, что данный материал немного уступает по определенным показателям другим разновидностям минеральной ваты, например, стекловаты либо каменной ваты. Особенно это касается теплопроводности и спекаемости.

Здесь можно посмотреть фото шлаковой ваты.

Производство и качественные характеристики

Для производства утеплителя используются:

  • технический глинозем с содержанием оксида алюминия в количестве 99%;
  • чистый кварцевый песок;
  • связующее (в качестве него используются следующие материалы: огнеупорная глина, жидкое стекло, кремнийорганические связующие, глиноземистый цемент).

Для получения расплава песка и глинозема используют руднотермические печи. Процесс происходит при температуре около 1750 градусов. С помощью энжекционного сопла и пара, подаваемого под давлением 0,7 — 0,8 МПа, расплав раздувается, образуя конечный продукт. Плотность утеплителя может составлять от 80 до 130 кг/куб. м.

Каолиновый утеплитель выпускается в различных видах:

  • комовая вата;
  • рулоны;
  • плиты;
  • скорлупы;
  • сегменты.

Часто каолиновый утеплитель называют муллитокремнеземистым волокном, что отражается в маркировке изделий из него. Обычное волокно обозначается как МКРР, а волокно с добавлением хрома как МКРХ.

Добавление хрома позволяет создать материал с еще большей температурной стойкостью.

Достоинства каолиновой ваты и области ее применения

Исходя из приведенных характеристик видно, что каолиновый утеплитель является теплоизоляционным материалом высокой эффективности, который также используется в целях термокомпенсации.

Основные свойства муллитокремнеземистого волокна таковы:

  • небольшая плотность, а значит, малый вес, позволяют использовать вату в самых различных условиях, в том числе и на высоте;
  • низкая теплопроводность позволяет применять данный материал везде, где нужно обеспечить надежную теплоизоляцию оборудования или конструкции;
  • высокая термостойкость;
  • малая теплоемкость;
  • высокая химическая стойкость – материал практически инертен к воде, кислотам, маслам, щелочам и водяному пару;
  • стойкость к термоударам;
  • эластичность – гарантирует максимально плотное прилегание материала к изолируемым поверхностям;
  • устойчивость к деформациям и вибрации позволяет использовать утеплитель там, где другие материалы могут быть подвержены разрушению или терять свои свойства;
  • отличная звукоизоляция;
  • достаточно высокие электроизоляционные свойства, которые почти не меняются при повышении температуры до 800 градусов.

Все эти свойства каолинового утеплителя позволяют использовать его для следующих целей:

  • уплотнение окон, дверей, заслонок;
  • огнеупорная футеровка и ее ремонт;
  • изоляция газоходов, теплогенераторов, дымовых труб;
  • создание огнезащитных покрытий;
  • заполнение полостей огнеупорной кладки;
  • строительство зданий, судов, котельных;
  • изоляция резервуаров, в которых хранятся сжиженные газы;
  • в качестве набивки теплоизоляционных слоев печных вагонеток;
  • фильтрация газов высокой температуры в агрессивной среде;
  • в печах катализа и риформинга;
  • теплоизоляция газовых турбин;
  • в качестве изоляции кабельных каналов, расположенных в сгораемых стенах и перегородках зданий.

Как видно, в определенных сферах популярность данного утеплителя весьма широка.
Не так давно в качестве сырья для производства ваты начали использовать цирконий и окись иттрия, что позволило получить материал, который может выдерживать рабочую температуру до 2700 градусов. Пока это опытные образцы, но потенциал их применения очень велик.

В частном строительстве каолиновый утеплитель стоит применять там, где есть вероятность возникновения высоких температур.

Использовать его в качестве обычной теплоизоляции большого смысла нет, поскольку в сравнении с обычной минватой обойдется он очень дорого.

(Visited 4 051 times, 1 visits today)

Физические свойства

Оптические

  • Цвет белый, от примесей может быть разных оттенков желтый, зеленоватый, голубоватый, красный., в мелких чешуйках бесцветен.
  • Черта белая.
  • Блеск агрегатов матовый.
  • Отлив в сплошных массах матовый. Тонкие чешуйки имеют перламутровый отлив.
  • Прозрачность. В куске непрозрачен, но отдельные листочки прозрачны.

Механические

  • Твердость 1.
  • Плотность. 2,58—2,60.
  • Спайность совершенная, но макроскопически не определяется.
  • Излом. Раковистый, землистый.

Химические свойства

Поведение в кислотах. Разлагается в H2SO4.

Прочие свойства: на ощупь жирный, в сухом состоянии легко поглощает влагу (прилипает к языку), во влажном образует пластичную массу.

Диагностические признаки

Сходные минералы монтмориллонит, серицит.

Определяется по глиноподобному облику, мягкости, жирности на ощупь. Похож на плотный землистый кальцит, но не реагирует с соляной кислотой. Для отличия от других глинистых минералов нужны специальные методы диагностики.

Сопутствующие минералы. Полевые шпаты, опал, лимонит. фельдшпатоиды, мусковит, кварц, циркон, касситерит и др.; большей частью они встречаются в виде реликтов в каолинитовой массе.

9.42 кремнеземный шнур

Технические характеристики
Сделать заказ

КРЕМНЕЗЕМНЫЙ ШНУР . НИЗКАЯ ЦЕНА

МУЛЛИТОКРЕМНЕЗЕМНЫЙ ОГНЕУПОРНЫЙ ШНУР д.6-30мм ,

цена крупный опт (контейнер) от 220 руб/кг.

цена опт от 280 руб/кг.
цена мелкий опт (бухта) от 20 руб/м.

цена розница — нет .

Шнуры наполненные кремнеземные ТУ 5952-166-05786904-02.

Шнуры наполненные кремнеземные состоят из наполнителя одной или двух оплеток нитей. В качестве наполнителя используется термостойкий холст, нить или ровинг. Оплетки выполняются из стеклянных, кремнеземных нитей. Шнуры предназначены для теплоизоляции и уплотнения узлов котельных установок и другого оборудования, работающего при повышенных температурах. Выпускаются марок ШКНХ1, ШКНХ2, ШКНН1, ШКНН2. Шнуры рекомендуется применять при следующих температурах рабочей среды: до 900°С. Шнуры не токсичны, не горючи, не воспламеняемы. Сечение шнуров — круглое. Шнуры с наполнителем из нитей или ровинга выпускаются диаметром 5, 10, 18, 20, 22мм. Шнуры с наполнителем из термостойкого холста выпускаются диаметром 4-50мм.

Читайте также:
Современный дизайн однокомнатной квартиры-хрущевки 30 кв. м.

Шнуры кремнеземные ТУ 6-48-05786904-99.

Кремнеземный шнур крученый и плетеный, 900 -1000 С, д. 5-40мм

Оптовикам низкие цены!

Видео КрасИзолит-кремнеземный шнур при 1300-2000 С

9.ТЕПЛО и ТЕРМОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ 9.1.войлок 9.3.минплита и маты 9.4.кремнеземные материалы

9.41.кремнеземный войлок9.42.кремнеземный шнур9.43.кремнеземная ткань9.44.кремнеземный мат5.35.кремнеземный картон9.44.кремнеземный мат9.5.изоплан

шнур кремнеземный, krasizolit@bk.ru, т.(391)2527863,УФО, Курган, Екатеринбург, Нижний Тагил, Ревда, Каменск-Уральский, Тюмень, Югра, Ханты-Мансийск, Челябинск, Магнитогорск, Златоуст Миасс, Салехард, Сургут, Нижневартовск, Нефтеюганск, Уфа, Йошкар-Ола, Дзержинск, Орск, Саранск, Казань, Ижевск , Чебоксары, СФО, Барнаул, Улан-Уде, Кызыл Тыва, Абакан, Горно-Алтайск, Чита, Улан-Уде, Красноярск, Иркутск, Кемерово, Новокузнецк, Новосибирск, Омск, Томск, Иркутск, Якутск, Чита, ДВФО, Петропавловск-Камчатский, Хабаровск, Комсомольск-на-Амуре, Магадан, Биробиджан, Южно-Сахалинск, Уссурийск, Белогорск, Нерюнгри, Анадырь, Находка, г.Магадан, г.Биробиджан, Анадырь, поставляем во все города РФ, контракты по СНГ, оптовые поставки, Узбекистан, Казахстан, Туркменистан, Белорусь, Украина цена низкая,
г.Москва, т/ф. (499)2724856

кремнеземная вата .

Сколько Выдержит Рука? Тест Керамического Волокна Cerablanket для Прохода Перекрытия в Бане.

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Нажми для просмотра

Область применения

Огнеупорная минеральная вата используется для утепления внешних и внутренних стен деревянных домов. Материалом часто утепляют конструктивные элементы бань. Эти здания подвергаются высоким температурным нагрузкам, поэтому для их теплоизоляции применяются маты особо стойких марок.

Также огнеупорная минеральная вата можно использовать для утепления водо- и газопроводов, стен зданий, которые располагаются возле взыровоопасных объектов.

Среди популярных марок выделяется продукция компании Rockwool. Она выпускает огнеупорные утеплители, способные выдерживать воздействие температуры в 1000 градусов. Для изоляции кровли часто применяется продукция компании URSA. Из российских марок минваты можно выделить утеплители производства «Технониколь» и «Изорок».

Важно при работе с базальтовыми и другими видами огнеупорного материала использовать средства индивидуальной защиты. При обработке утеплителя в воздух поступают мелкие частицы волокна, которые могут спровоцировать аллергическую реакцию и другие неприятные последствия

Кроме того, огнеупорные маты, установленные вертикально, со временем слеживаются под действием собственного веса. Поэтому в процессе монтажа изделий необходимо использовать специальные крепления, посредством которых фиксируется минеральная вата.

А если огнеупорный утеплитель устанавливается вдоль стен бани и иных помещений повышенной влажности, следует с внешней стороны утеплителя размещать слой пароизоляции.

Вредные вещества в шлаковате

Фенолформальдегидные смолы, входящие в состав шлаковаты, негативно влияют на здоровье человека. Некоторые эксперты считают, что такие вещества очень опасны для человека. Однако производители уверяют, что концентрация вредных веществ очень маленькая и не может нести никакой опасности. Чтобы не рисковать своим здоровьем, лучше покупать материал только известных и проверенных производителей.

По отзывам строителей, использующих данный утеплитель, говорят, что шлаковата — практичный и недорогой материал с длительным сроком эксплуатации. Главное — соблюдать все технические условия и меры безопасности при монтаже.

Свойства

Данный материал обладает явно выраженными изоляционными свойствами. Такое волокно с успехом применяется в самых различных областях, благодаря высоким огнеупорным свойствам. Также широко используется для фильтрации газов при относительно высоких температурах. Учитывая хорошую огнеупорность, каолиновая вата хорошо подходит в качестве материала для основы.

Волокна этой ваты показывают высокую устойчивость к воздействиям различных химических веществ, например щелочей и кислот. Обладает хорошими электроизолирующими показателями. Также данный материал обладает высокой пластичностью, поэтому может применяться в любых конструкциях, независимо от вида и формы. Все эти свойства каолиновой ваты позволяют применять ее в самых разнообразных целях.

Ключевые параметры

Огнестойкую вату изготавливают из расплава горной породы, шлака или жидкого стекла. В зависимости от типа материала, на основе которого создана минвата, она подразделяется на три вида:

  • стеклянная;
  • каменная;
  • шлаковая.

Среди несгораемых материалов лучшей по показателю огнестойкости считается каменная вата. Ее базальтовая разновидность способна выдерживать воздействие пламени при температуре в 1000°, сохраняя при этом первоначальную форму.

Огнеупорная вата данного типа изготавливается из тех же компонентов, что и другие виды материала. Но в качестве вещества, связующего между собой остальные части, применяются глинистые, доломитовые и другие составы, полученные из горных пород.

Для организации противопожарного слоя используется огнеупорный базальтовый утеплитель, в основе которого лежат габбро или диабаз. В состав материала включены различные примеси, обеспечивающие ему сравнительно высокие показатели текучести.

Концентрация формальдегидной смолы, которая быстро загорается при контакте с открытым пламенем, сведена в базальтовой минеральной вате к минимуму. В этой особенности заключается главный недостаток утеплителя: он хуже переносит воздействие влаги.

Характеристики химической коррозии и как ее устранить

Характеристики химической коррозии и как ее устранить
Химическая коррозия представляет собой процесс, который состоит в разрушении металла при взаимодействии с агрессивными внешними средами.

Разновидность коррозийного процесса химического типа не будет иметь связи с воздействием тока (электричества). При таком типе коррозии происходит окислительная реакция, где материал разрушения одновременно является восстановителем элементов среды.

Классификация видов агрессивных сред будет включать в себя два типа металлического разрушения – химическая коррозия к неэлектролитным жидкостям и газовая химическая коррозия.

Определение коррозии

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией.

Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Почему металл корродирует?

Жизнь современного человека нельзя представить без металлов. Они окружают нас везде — это и бытовая техника в наших домах, и транспортные средства, на которых мы добираемся до дома или работы, и смартфоны, без которых многие из нас не представляют жизнь. Почти всё, что нас окружает состоит из металлов, но, к сожалению, как и всё в этом мире, они не вечны и под действием внешней среды разрушаются — корродируют.

Почему коррозия «выгодна» для металлов? Дело в том, что большинство из них существуют в природе в химически связанном состоянии, например, в виде оксидов (корунд) или сульфидов (пирит). В чистом виде почти все металлы неустойчивы и чтобы выделить их из соединений приходится затрачивать немалую энергию. Обратный же процесс, когда металлы переходят в связанное состояние, всегда термодинамически более выгоден. Поэтому он происходит самопроизвольно, а металлы при любой возможности стремятся вступить в реакцию со своим окружением и перейти в более устойчивую форму. Иллюстрация этого представлена на рисунке 1.

Рисунок 1 – Схема восстановления металла из руд с последующей коррозией (окислением). Э – условный уровень энергии. Коррозия приводит к огромным экономическим затратам, а её следствием становятся глобальные экологические катастрофы. Потеря металлофонда от коррозии составляет порядка 12% в год.

Помимо прямых потерь существуют и косвенные потери, вызываемые коррозией: • из-за простоя оборудования вызванных авариями;• из-за снижения мощностей оборудования;• из-за снижения качества продукции;• на ликвидацию последствий аварии;• на ремонт оборудования;• на дальнейшую защиту от коррозии.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов:

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная

Основные виды коррозии металлов

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде:

2H++2e— = H2 разряд водородных ионов

2H3O++2e— = H2 + 2H2O

Кислородная деполяризация

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде:

O2 + 4H++4e— = H2O восстановление растворенного кислорода

O2 + 2H2O + 4e— = 4OH—

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Виды электрохимической коррозии

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e— = Fe2+

K: O2 + 4H+ + 4e— = 2H2O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Классификация коррозионных процессов по характеру коррозионного разрушения.

4.1 Контактная коррозия.

Контактная коррозия образуется при контакте разных металлов в присутствии электролита или влажного воздуха. В образовавшейся гальванопаре, металл с более электроотрицательным потенциалом становится анодом и разрушается в первую очередь, тогда как более электроположительный металл – катодом.

В качестве примера можно рассмотреть железо (рисунок 4). Цинк, алюминий и кадмий (последний — в солевой среде) являются анодами для стали, а значит именно они будут окисляться в первую очередь, тогда как олово, хром, медь, свинец, никель – катодами, а значит железо будет подвержено глубокой локальной коррозии, пример изображён на рисунке.

Рисунок 4 – Примеры контактной коррозии на стали.

4.2 Щелевая коррозия.

Щелевая коррозия

– это коррозия, возникающая в случаи, если часть металла изолирована от основного участка неметаллическим материалом (резиной, деревом, пластиком и т.д.). Пример такой коррозии можно наблюдать в трубах в месте соприкосновения с сальником (рисунок 5). Образование полости под сальником вызывает протечки в трубах. При наличии таких неровностей коррозионная жидкость застаивается в щели, где и происходит бурная коррозия металла.

Причиной щелевой коррозии является пониженная концентрация окислителей в зазорах по сравнению с объёмом раствора и замедленный отвод продуктов коррозии. В результате их накопления меняется pH раствора в щели, что так же ускоряет коррозию.

Металл в щели и металл открытой поверхности образуют макропару:

Me — 2е = Me2+ (внутри щели) 0,5О2 + H2O + 2е = 2ОН- (на поверхности металла)

Поскольку площадь открытой поверхности гораздо больше, чем внутри щели, плотность тока коррозии внутри щели оказывается чрезвычайно высокой.

Рисунок 5 – Кислородная концентрационная ячейка под сальником. По мере протекания коррозии внутри щели накапливается избыточный положительный заряд. Ионы ОН- устремляются в щель, чтобы нейтрализовать этот заряд. В результате, на внутренней поверхности щели осаждается гидроксид металла, что ещё больше сокращает эффективную площадь анода.

4.3 Питтинговая коррозия.

называют глубокие поражения (точечные язвы) на поверхности металла (рисунок 6). Питтинговая коррозия, вследствие своей локализованности и малой заметности, является одним из наиболее опасных видов коррозионного разрушения. Не следует путать питтиговую коррозию с питтингом на никелевых покрытиях.

Так как пассирующий слой на поверхности металла не является гомогенной системой, то коррозия возникает из-за наличия анодных и катодных участков на поверхности. В возникшей гальванопаре анодом является питтинг, а катодом – остальная часть поверхности. На аноде происходит высвобождение электронов, которые восстанавливают кислород на катодной пассивированной части поверхности.

Рисунок 6 – Виды питтингов: а – открытый с защитным слоем на окружающей поверхности; б – закрытый, без окружающего защитного слоя; в – закрытый, с окружающим защитным слоем. 1 – металл; 2 – раствор; 3 – защитный слой; 4 – пористые продукты коррозии; 5 – крышка над питтингом; 6 – отверстия в крышке. Развитию питтинга способствуют различного рода дефекты на поверхности пассивной плёнки, например, царапины, сколы, поры, посторонние включения. Также для возникновения питтинга необходимо, чтобы в растворе одновременно находились активаторы питтинговой коррозии (Cl-, Br-, J-, CN-) и пассиваторы металла (OH-, SO42-, NO3-,ClO4-).

4.4 Межкристаллитная коррозия.

Межкристаллическая коррозия

возникает из-за разницы потенциалов на границе зерна и в его матрице (рисунок 7).

На воздухе на границе зерна образуется карбидная фаза, что сдвигает потенциал в область более электроотрицательных значений. Таким образом граница зерна является анодом по отношению к их матрице.

Наиболее опасен данный тип коррозии для сплавов, так как в месте скопления более электроотрицательного металла будет образовываться анод, а основного – катод. Например, для нержавеющих сталей, содержащих хром, вблизи границ зёрен содержание хрома оказывается ниже, чем на остальной поверхности, что делает их менее пассивированными. Вследствие этого такие места становятся анодами по отношению к матрице зерна.

Рисунок 7 – Межкристаллическая коррозия нержавеющей стали: 1 – катод; 2 – анод; 3 – карбидная фаза; 4 – зона, обеднённая хромом; 5 – граница зёрен.

4.5 Фреттинг-коррозия.

Фретинг-коррозия

происходит между двумя поверхностями, находящимися в непрерывном контакте друг с другом и совершающими малые колебания. Поверхности никогда не отрываются друг от друга, поэтому в точках механического контакта происходит накопление осколков продуктов коррозии.

Данная коррозия возникает при незначительных колебаниях, циклических или возвратно-поступательных движений с малыми амплитудами и скоростями. Этой коррозии подвергаются болты, заклёпки, шарниры, муфты, клапаны, детали двигателей и пр.

4.6 Коррозионное растрескивание под напряжением.

Коррозионное растрескивание под напряжением возникает, когда металлическое изделие подвержено растяжению в коррозионной среде. Тогда даже при напряжениях ниже напряжения разрушения происходит растрескивание, в конце концов, приводящее к разрушению конструкции или изделия.

На растянутых участках металла идёт коррозия, поскольку они оказываются анодами по отношению к нерастянутой части. Это явление наблюдается на любых металлах и сплавах, а также в любых средах.

4.7 Коррозионная усталость.

Коррозионная усталость возникает вследствие одновременного воздействия агрессивной среды и механической нагрузки.

Коррозионная усталость часто бывает причиной «неожиданного» разрушения металлических деталей, так, если деталь, находящаяся в коррозионном окружении, подвержена непрерывным вибрациям, её разрушение происходит при напряжении гораздо ниже предела выносливости.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

фосфатирование – получение защитной пленки фосфатов (Fe3(PO4)2, Mn3(PO4)2);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла и коррозионной среды

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Примеры задач с решениями на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов, а также уравнения реакций, протекающих при электрохимической коррозии металлов приведены в разделе Задачи к разделу Коррозия металлов
Категории Коррозия металлов, ОБЩАЯ ХИМИЯ

Что такое химическая коррозия и как ее устранить?

Химическая коррозия — это процесс, состоящий в разрушении металла при взаимодействии с агрессивной внешней средой. Химическая разновидность коррозийных процессов не имеет связи с воздействием электрического тока. При этом виде коррозии происходит окислительная реакция, где разрушаемый материал — одновременно восстановитель элементов среды.

Классификация разновидности агрессивной среды включает два вида разрушения металла:

  • химическая коррозия в жидкостях-неэлектролитах;
  • химическая газовая коррозия.

к содержанию ↑

Газовая коррозия

Самая частая разновидность химической коррозии — газовая — представляет собой коррозийный процесс, происходящий в газах при повышенных температурах. Указанная проблема характерна для работы многих типов технологического оборудования и деталей (арматуры печей, двигателей, турбин и т.д.). Кроме того, сверхвысокие температуры используются при обработке металлов под высоким давлением (нагревание перед прокаткой, штамповкой, ковкой, термическими процессами и т.д.).

Особенности состояния металлов при повышенных температурах обуславливаются двумя их свойствами — жаропрочностью и жаростойкостью. Жаропрочность — это степень устойчивости механических свойств металла при сверхвысоких температурах. Под устойчивостью механических свойств понимается сохранение прочности в течение продолжительного времени и сопротивляемость ползучести. Жаростойкость — это устойчивость металла к коррозионной активности газов в условиях повышенных температур.

Скорость развития газовой коррозии обуславливается рядом показателей, в числе которых:

  • температура атмосферы;
  • компоненты, входящие в металл или сплав;
  • параметры среды, где находятся газы;
  • продолжительность контактирования с газовой средой;
  • свойства коррозийных продуктов.

На коррозийный процесс больше влияние оказывают свойства и параметры оксидной пленки, появившейся на металлической поверхности. Образование окисла можно хронологически разделить на два этапа:

  • адсорбция кислородных молекул на металлической поверхности, взаимодействующей с атмосферой;
  • контактирование металлической поверхности с газом, в результате чего возникает химическое соединение.

Первый этап характеризуется появлением ионной связи, как следствие взаимодействия кислорода и поверхностных атомов, когда кислородный атом отбирает пару электроном у металла. Возникшая связь отличается исключительной силой — она больше, нежели связь кислорода с металлом в окисле.

Объяснение такой связи кроется в действии атомного поля на кислород. Как только поверхность металла наполняется окислителем (а это происходит очень быстро), в условиях низких температур, благодаря силе Ван-дер-Ваальса, начинается адсорбция окислительных молекул. Результат реакции — возникновение тончайшей мономолекулярной пленки, которая с течением времени становится толще, что усложняет доступ кислорода.

На втором этапе происходит химическая реакция, в ходе которой окислительный элемент среды отбирает у металла валентные электроны. Химическая коррозия — конечный результат реакции.

Характеристики оксидной пленки

Классификация оксидных пленок включает их три разновидности:

  • тонкие (незаметны без специальных приборов);
  • средние (цвета побежалости);
  • толстые (видны невооруженным взглядом).

Появившаяся оксидная пленка имеет защитные возможности — она замедляет или даже полностью угнетает развитие химической коррозии. Также наличие оксидной пленки повышает жаростойкость металла.

Однако, действительно эффективная пленка должна отвечать ряду характеристик:

  • быть не пористой;
  • иметь сплошную структуру;
  • обладать хорошими адгезивными свойствами;
  • отличаться химической инертностью в отношении с атмосферой;
  • быть твердой и устойчивой к износу.

Одно из указанных выше условий — сплошная структура имеет особенно важное значение. Условие сплошности — превышение объема молекул оксидной пленки над объемом атомов металла. Сплошность — это возможность окисла накрыть сплошным слоем всю металлическую поверхность. При несоблюдении этого условия, пленка не может считаться защитной. Однако, из этого правила имеются исключения: для некоторых металлов, например, для магния и элементов щелочно-земельной групп (исключая бериллий), сплошность не относится к критически важным показателям.

Чтобы установить толщину оксидной пленки, используются несколько методик. Защитные качества пленки можно выяснить в момент ее образования. Для этого изучаются скорость окисления металла, и параметры изменения скорости во времени.

Для уже сформированного окисла применяется другой метод, состоящий в исследовании толщины и защитных характеристик пленки. Для этого на поверхность накладывается реагент. Далее специалисты фиксируют время, которое понадобится на проникновение реагента, и на основании полученных данных делают вывод о толщине пленки.

Обратите внимание! Даже окончательно сформировавшаяся оксидная пленка продолжает взаимодействовать с окислительной средой и металлом.

Скорость развития коррозии

Интенсивность, с какой развивается химическая коррозия, зависит от температурного режима. При высокой температуре окислительные процессы развиваются стремительнее. Причем снижение роли термодинамического фактора протекания реакции не влияет на процесс.

Немалое значение имеет охлаждение и переменный нагрев. Из-за термических напряжений в оксидной пленке появляются трещины. Через прорехи окислительный элемент попадает на поверхность. В результате образуется новый слой оксидной пленки, а прежний — отслаивается.

Не последнюю роль играют и компоненты газовой среды. Этот фактор индивидуален для разных видов металлов и согласуется с температурными колебаниями. К примеру, медь быстро поддается коррозии, если она контактирует с кислородом, но отличается устойчивостью к этому процессу в среде оксида серы. Для никеля же напротив, серный оксид губителен, а устойчивость наблюдается в кислороде, диоксиде углерода и водной среде. А вот хром проявляет стойкость ко всем перечисленным средам.

Обратите внимание! Если уровень давления диссоциации окисла превышает давление окисляющего элемента, окислительный процесс останавливается и металл обретает термодинамическую устойчивость.

На скорость окислительной реакции влияют и компоненты сплава. Например, марганец, сера, никель и фосфор никак не способствуют окислению железа. А вот алюминий, кремний и хром делают процесс более медленным. Еще сильнее замедляют окисление железа кобальт, медь, бериллий и титан. Сделать процесс более интенсивным помогут добавки ванадия, вольфрама и молибдена, что объясняется легкоплавкостью и летучестью данных металлов. Наиболее медленно окислительные реакции протекают при аустенитной структуре, поскольку она наиболее приспособлена к высоким температурам.

Еще один фактор, от которого зависит скорость коррозии, — характеристика обработанной поверхности. Гладкая поверхность окисляется медленнее, а неровная — быстрее.

Коррозия в жидкостях-неэлектролитах

К неэлектропроводным жидким средам (т.е. жидкостям-неэлектролитам) относят такие органические вещества, как:

  • бензол;
  • хлороформ;
  • спирты;
  • тетрахлорид углерода;
  • фенол;
  • нефть;
  • бензин;
  • керосин и т.д.

Кроме того, к жидкостям-неэлектролитам причисляют небольшое количество неорганических жидкостей, таких как жидкий бром и расплавленная сера.

При этом нужно заметить, что органические растворители сами по себе не вступают в реакцию с металлами, однако, при наличии небольшого объема примесей возникает интенсивный процесс взаимодействия.

Увеличивают скорость коррозии находящиеся в нефти серосодержащие элементы. Также, усиливают коррозийные процессы высокие температуры и присутствие в жидкости кислорода. Влага интенсифицирует развитие коррозии в соответствии с электромеханическим принципом.

Еще один фактор быстрого развития коррозии — жидкий бром. При нормальных температурах он особенно разрушительно воздействует на высокоуглеродистые стали, алюминий и титан. Менее существенно влияние брома на железо и никель. Самую большую устойчивость к жидкому брому показывают свинец, серебро, тантал и платина.

Расплавленная сера вступает в агрессивную реакцию почти со всеми металлами, в первую очередь со свинцом, оловом и медью. На углеродистые марки стали и титан сера влияет меньше и почти совсем разрушает алюминий.

Защитные мероприятия для металлоконструкций, находящихся в неэлектропроводных жидких средах, проводят добавлением устойчивым к конкретной среде металлов (например, сталей с высоким содержанием хрома). Также, применяются особые защитные покрытия (например, в среде, где содержится много серы, используют алюминиевые покрытия).

Способы защиты от коррозии

Методы борьбы с коррозией включают:

  • обработку основного металла защитным слоем (например, нанесение краски);
  • использование ингибиторов (например, хроматов или арсенитов);
  • внедрение материалов, устойчивых к коррозийным процессам.

Выбор конкретного материала зависит от потенциальной эффективности (в том числе технологической и финансовой) его использования.

Современные принципы защиты металла основываются на таких методиках:

  1. Улучшение химической сопротивляемости материалов. Успешно зарекомендовали себя химически стойкие материалы (высокополимерные пластики, стекло, керамика).
  2. Изолирование материала от агрессивной среды.
  3. Уменьшение агрессивности технологической среды. В качестве примеров таких действий можно привести нейтрализацию и удаление кислотности в коррозийных средах, а также использование всевозможных ингибиторов.
  4. Электрохимическая защита (наложение внешнего тока).

Указанные выше методики подразделяются на две группы:

  1. Повышение химической сопротивляемости и изолирование применяются до того, как металлоконструкция запускается в эксплуатацию.
  2. Уменьшение агрессивности среды и электрохимическая защита используются уже в процессе применения изделия из металла. Применение этих двух методик дает возможность внедрять новые способы защиты, в результате которых защита обеспечивается изменением эксплуатационных условий.

Один из самых часто применяемых способов защиты металла — гальваническое антикоррозийное покрытие — экономически нерентабелен при значительных площадях поверхностей. Причина в высоких затратах на подготовительный процесс.

Ведущее место среди способов защиты занимает покрытие металлов лакокрасочными материалами. Популярность такого метода борьбы с коррозией обусловлена совокупностью нескольких факторов:

  • высокие защитные свойства (гидрофобность, отталкивание жидкостей, невысокие газопроницаемость и паропроницаемость);
  • технологичность;
  • широкие возможности для декоративных решений;
  • ремонтопригодность;
  • экономическая оправданность.

В то же время, использование широкодоступных материалов не лишено недостатков:

  • неполное увлажнение металлической поверхности;
  • нарушенное сцепление покрытия с основным металлом, что ведет к скапливанию электролита под антикоррозийным покрытием и, таким образом, способствует коррозии;
  • пористость, приводящая к повышенной влагопроницаемости.

И все же, окрашенная поверхность защищает металл от коррозийных процессов даже при фрагментарном повреждении пленки, тогда как несовершенные гальванические покрытия способны даже ускорять коррозию.

Органосиликатные покрытия

Для качественной защиты от коррозии рекомендуется применение металлов с высоким уровнем гидрофобности, непроницаемости в водных, газовых и паровых средах. К числу таких материалов относятся органосиликаты.

Химическая коррозия практически не распространяется на органосиликатные материалы. Причины этого кроются в повышенной химической устойчивости таких композиций, их стойкости к свету, гидрофобных качествах и невысоком водопоглощении. Также органосиликаты устойчивы к низким температурам, обладают хорошими адгезивными свойствами и износостойкостью.

Проблемы разрушения металлов из-за воздействия коррозии не исчезают, несмотря на развитие технологий борьбы с ними. Причина в постоянном возрастании объемов производства металлов и все более сложных условий эксплуатации изделий из них. Окончательно решить проблему на данном этапе нельзя, поэтому усилия ученых сосредоточены на поисках возможностей по замедлению коррозионных процессов.

Характеристики химической коррозии и как ее устранить

Характеристики химической коррозии и как ее устранить

Химическая коррозия представляет собой процесс, который состоит в разрушении металла при взаимодействии с агрессивными внешними средами.

Разновидность коррозийного процесса химического типа не будет иметь связи с воздействием тока (электричества). При таком типе коррозии происходит окислительная реакция, где материал разрушения одновременно является восстановителем элементов среды.

Классификация видов агрессивных сред будет включать в себя два типа металлического разрушения – химическая коррозия к неэлектролитным жидкостям и газовая химическая коррозия.

Коррозия газового типа

Общие сведения

Самой большой разновидностью химической коррозии – газовой – представляют собой процесс коррозионного типа, который происходит в газе при повышении температуры. Указанная проблема будет характерной для работы большинства типов технологического оборудования, а еще деталей (двигателей, арматуры печей, турбин и прочего). Более того, сверхвысокие температуры применяются для обработки металлов под высоким давлением (прогревание перед прокаткой, ковкой, штамповкой, термическим процессом и прочее).

Особенности металлов и их состояния при повышенной температуре будет обуславливать двумя свойствами – жароустойчивостью и жаропрочностью. Последнее – это степень устойчивости свойств механического характера при очень высоких температурах. Под устойчивостью механических свойств можно понимать сохранение прочности в течение длительного времени и сопротивляемости ползучести. Устойчивость к жару – это устойчивость металлу к коррозионной активности газов в условиях повышенной температуры.

Скорость развития коррозии газового типа обуславливается около показателей, среди которых:

  • Атмосферная температура.
  • Компоненты, которые входят в сплав или металл.
  • Параметры среды, где есть газы.
  • Продолжительность контактирования со средой из газа.
  • Свойство продуктов коррозионного типа.

На процесс коррозии большое влияние будут оказывать свойства и параметры оксидной пленки, которая появилась на поверхности из металла.

Образование окисла можно разделить все на пару этапов (хронологически):

  1. Адсорбция кислородных молекул на поверхности из металла, которая взаимодействует с атмосферой.
  2. Контактирование металлической поверхности с газом, из-за чего появляется химическое соединение.

Первый этап будет характеризоваться получением ионной связи, как следствие взаимодействия кислорода и атомных поверхностей, когда кислородный атом начинает отбирать электроны у металла. Появляющаяся связь начинает отличаться исключительной силой – она намного больше, чем связь кислорода с металлом при окисле.

Объяснение подобной связи будет крыться в действии атомного поля на кислород. Как только металлическая поверхность станет наполняться окислителем (а это быстро происходит), в условиях низкой температуры, начинается адсорбция окислительной молекулы. Результатом реакции будет появление тончайшей мономолекулярной пленки, которая спустя время становится толще, что лишь усложняет кислородный доступ. На втором этапе будет происходить химическая реакция, при которой окислительный элемент среды начинает отбирать у металла электроны валентного типа. Коррозия химического типа является конечным результатом реакции.

Характеристики оксидной пленки

Предлагаем рассмотреть характеристики химической коррозии.

Классификация оксидных пленок имеет 3 разновидности:

  • Тонкие (они незаметны без особого прибора).
  • Средние (цвета побежалости).
  • Толстые (видны человеческому глазу).

Полученная оксидная пленка имеет защитные возможности – она будет замедлять или даже в полной мере угнетать развитие коррозии. Еще наличие пленки повысить устойчивость металлу к жару.

Но, действительно эффективная пленка должна иметь следующие характеристики:

  • Не быть пористой.
  • Обладать сплошной структурой.
  • Иметь прекрасные адгезионные свойства.
  • Отличаются интертностью химического типа в отношении с атмосферой.
  • Быть твердой, а также обладать устойчивостями к износу.

Одно из условий, указанных выше – сплошная структура обладает особенно важным значением. Условием сплошности будет превышение молекулярного объема оксидной пленки над объемом металлических атомов. Сплошность – это возможность окисла накрыть полным слоем всю металлическую поверхность. Если не соблюдать условие, то пленка не будет защитной. Но, из такого правила есть исключения – для определенных металлов, к примеру, элементов щелочно-земельных групп (исключением будет бериллий) и магния, сплошность не является к критическим важным показателям.

Чтобы установить толщину пленки оксидного типа, применяется пару методик. Защитные свойства пленки можно выявить при образовании. Для этого следует изучить скорость металлического окисления, и параметры изменений скорости по времени. Для уже сформировавшегося окисла используется иной метод, который состоит в исследовании толщины и характеристик защитного типа пленки. Для этого на поверхность следует накладывать реагент. Далее специалисты будут фиксировать время, которое требуется для появления реагента, и на основании данных следует сделать вывод про толщину пленки.

Обратите внимание, что даже окончательно появившаяся оксидная пленка и дальше будет взаимодействовать с окислительной средой, а также металлом.

Скорость появления коррозии

Интенсивность, с которой развивается коррозия химического типа будет зависеть от режима температуры. При высокой температуре процессы окисления начинают развиваться стремительнее. При этом снижении роли термодинамического фактора протекания реакции не будет влиять на сам процесс. Немаловажное значение будет иметь охлаждение и переменное прогревание. Из-за термического напряжения в оксидной пленке начнут появляться трещины. Через прорехи элемент окисления попадет на поверхность. В результате появляется новый слой пленки оксидного типа, а прежний начинает отслаиваться.

Не последнюю роль будут играть компоненты газовой среды. Такой фактор индивидуальный для различных типов металлов и будет согласовываться с колебаниями температур. Например, медь будет быстро подаваться коррозии, если она будет контактировать с кислородом, но еще отличается устойчивостью к процессу в среде серного оксида. Для никеля же оксид губительный, а устойчивость видна в кислороде, диоксиде углерода и водной среде. А вот хром способен проявляться стойкость ко всем средам, которые перечислены. Если уровень давления диссоциации окисла будет превышать давление элемента оксиления, то сам процесс остановится и обретет термодинамическую устойчивость.

На скорость реакции окисления будут влиять и компоненты сплава. К примеру, сера, марганец, фосфор и никель никак не будут способствовать окислению железа. А вот кремний, алюминий и хром сильно замедляют процесс. Еще сильнее это делает медь, окисление железа, кобальт, титан и бериллий. Сделать процесс интенсивнее помогают добавки вольфрама, ванадия и молибдена, что объясняется летучестью и легкоплавкостью таких металлов. Самые медленные процессы химической коррозии протекают при аустенитной структуре, потому что она лучше всего приспособлена к высокой температуре. Еще одним фактором, от которого будет зависеть скорость – характеристика обработанной поверхности. Гладкая поверхность будет окисляться медленнее, а неровная намного быстрее.

Коррозия в неэлектролитных жидкостях

Общие сведения

К жидким неэлектропроводным средам (а точнее, неэлектролитным жидкостям) можно отнести такие органические вещества, к примеру:

  • Керосин.
  • Бензол.
  • Бензин.
  • Хлороформ.
  • Нефть.
  • Спирты.
  • Фенол.
  • Тетрахлорид углерода.

Еще к таким жидкостям причисляют малое количество жидкостей неорганического типа, к примеру, жидкий бром и сера, которая расплавлена. При этом следует отметить, что растворители органического типа сами по себе не будут вступать в реакцию с металлами, но, при наличие маленького объема примесей появляется интенсивный процесс взаимодействий. Скорость коррозии увеличивают находящиеся в нефти элементов с содержанием серы.

Также, для усиления коррозийных процессов нужны высокие температуры. Влага будет интенсифицировать развитие коррозии по электромеханическому принципу. Еще одним фактором быстрого коррозийного развития – бром в жидком виде. При нормальной температуре он особенно разрушительно будет воздействовать на высокоуглеродистые стали, титан и алюминий. Менее существенно воздействие брома на никель и железо, а самую большую устойчивость к жидкому типу брома будут показывать тантал, свинец, платина и серебро.

Расплавленная сера будет вступать в агрессивные реакции практически со всеми металлами, и в первую очередь с оловом, свинцом и медью. На углеродистые марки титан и стали сера будет влиять меньше, а еще практически полностью разрушает алюминий. Защитные действия для металлических конструкций, которые находятся в неэлектропроводных средах жидкого типа, проводят добавлением устойчивым к определенной среде металлом (к примеру, сталей с большим содержанием хрома). Еще используются особые защитные покрытия (к примеру, в среде, где есть много серы, применяют алюминиевые покрытия).

Способы защиты от коррозии

Способы борьбы с коррозией будут включать в себя:

  • Обработку главного металла защитным слоем (например, нанесение лакокрасочного материала).
  • Применение ингибиторов (арсенитов или хроматов).
  • Внедрение материалов, которые устойчивые к коррозийным процессам.

Подбор определенного материала будет зависеть от потенциальной эффективности (тут имеется виде финансовой и технологической) ее применения.

Современные принципы по защите металла от химической коррозии металла будут основаны на следующих методиках:

  1. Улучшение споротивляемости химического типа. Себя смогли успешно зарекомендовать устойчивые материалы (стекло, высокополимерный пластик и керамика).
  2. Изоляция материала от агрессивных сред.
  3. Уменьшение агрессивности технологической среды – в роли примеров таких действий можно выполнить нейтрализацию и удалить кислотность в коррозионой среде, а еще применять различные ингибиторы.
  4. Защита электрохимического типа (накладывание внешнего тока).

Указанные методики будут подразделяться на две группы:

  • Повышение сопротивляемости химического типа и изолирование будет применяться до того, как металлическая конструкция запускается в использовании.
  • Уменьшение агрессивности и защиты электрохимического типа применяется уже при применении изделий и металла. Использование обеих методик дает возможность внедрять новые защитные методы, и в результате защита будет обеспечиваться изменением эксплуатационных условий.

Одним из самых часто используемых методов защиты металла является антикоррозийное гальваническое покрытие, но это экономически нерентабельно при большой площади поверхности. Причина в больших тратах на процесс подготовки. Ведущее место среди методов по защите будет занимать покрытие металла лакокрасочным материалом.

Популярность такого способа борьба с коррозией обусловлена совокупностью факторов:

  • Высокие свойства защиты (отталкивание жидкостей, гидрофобность, невысокая газовая проницаемость и паропроницаемость).
  • Технологичность.
  • Большие возможности для решений декоративного типа.
  • Ремонтопригодность.
  • Экономическая оправданность.

В то же время применение широкодоступных материалов тоже имеет недостатки:

  • Неполное уважение поверхности металла.
  • Нарушено сцепление покрытия с главным металлом, покрытием против коррозии, и начнет способствовать коррозии.
  • Пористость, которая приводит к повышенному уровню проницаемости влаги.

И все-таки, окрашенная поверхность защищает металлы от процессов коррозии даже при локальном повреждении пленки, тогда как несовершенные покрытия гальванического типы способны даже ускорить коррозию.

Органсиликатные типы покрытий

Для качественной защиты от коррозии советуют применение металлов с большим уровнем гидрофобности, непроницаемости газовых, водных и паровых средах. К числу подобных материалов можно отнести органосиликаты. Коррозия химического типа почти не распространяется на органосиликатные материалы. Причины того будут крыться в повышенной химической устойчивости композиций, их устойчивости к свету, невысоком уровне водопоглощении и гидрофобных качеств.

Процесс коррозии

Содержание статьи
  • Характеристика
  • Основные типы
  • Ингибиторы
  • Коррозия на авто
  • Методы защиты металлов

В современном мире из металлов самых разных видов производится большое количество продукции. Металлические материалы присутствуют в разных отраслях промышленности в виде станков и машин, инструментов. Очень важно при производстве какой –либо продукции сделать так, чтобы металлы как можно меньше покрывались ржавчиной или были устойчивы к ее появлению.

Характеристики коррозии

Коррозия в простонародии больше известная под названием ржавчина. Она представляет собой процесс самопроизвольного образования на металлической поверхности налета в результате влияния окружающей среды. Ржавчина обычно имеет темно-коричневый оттенок, который портит внешние качества изделия из того или иного металла.

Коррозия металла сегодня встречается достаточно часто. Причиной ее появления является то, что некоторые виды металлических материалов являются неустойчивыми к температурным перепадам и изменениям влажности. Изделиям из металлов достаточно часто приходится контактировать с различными веществами. Они могут влиять на них по-разному. В результате образуется коррозия различных видов.

Коррозия влияет не только на внешние качества изделий и объектов, но и способствуют разрушению металлического материала.

В результате конструкция, которая из него создана, приходит в негодность.

Коррозии подвергаются не только металлы, но и другие материалы. Сегодня довольно часто встречаются случаи, когда она появляется на пластмассе. Образование ржавчины присуще и бетонным изделиям.

Скорость коррозии зависит от размера температуры. С повышением температуры на каждые сто градусов появление ржавчины становится быстрее.

Типы коррозии

В современном мире представлено большое количество видов такого процесса, как образование ржавчины на поверхности материалов отдельных видов.

Виды коррозии сегодня встречаются следующие:

  1. Электрохимическая коррозия. Данный вид образования коррозии характеризуется тем, что на поверхности металлов появляются гальванические элементы, которые вызывают появление ржавчины. Для появления данного типа коррозии необходимо наличие электролита. В его роли чаще всего выступает вода. При соприкосновении с конденсатом или водой электроды или другие элементы металла меняют свой оксилительно-восстановительный потенциал.
  2. Водородная коррозия. При данном виде коррозии отмечается водородная деполяризация. При этом водород восстанавливается.
  3. Кислородная коррозия. Бывают ситуации, когда водород в щелочной среде не имеет возможности выделяться. В результате выделяется кислород, который приводит к появлению налета ржавчины на металлической поверхности.
  4. Химическая коррозия. При данном виде коррозии поверхность металла соприкасается со средой, которая провоцирует появления ржавчины.
Таблица. Виды электрохимической коррозии
№ пп Вид электрохимической коррозии Способ прокладки трубопровода (вид оборудования) Дополнительные коррозионные факторы
1. Атмосферная коррозия Наружные поверхности трубопроводов наземной и канальной прокладки (при уровне подтопления и заиливания канала, не достигающим изоляционных конструкций). Поверхности различных металлоконструкций и оборудования, не контактирующие с водой и грунтом. Внутренние напряжения в металле трубопровода и металлоконструкций, ударно-механическое воздействие капели с перекрытий. Характерные коррозионные повреждения: равномерная коррозия, в местах капели возможна коррозия пятнами.
2. Подземная коррозия Наружные поверхности трубопроводов бесканальной прокладки (при нарушении целостности изоляции), канальной прокладки (периодическое подтопление и заиливание канала, сопровождающееся увлажнением тепловой изоляции). Внутренние напряжения в металле, коррозия внешним постоянным и переменным током, воздействие капели. Характерные коррозионные повреждения: неравномерная коррозия, коррозия пятнами, при воздействии блуждающих токов возможны сквозные поражения стенки трубопровода.
3. Подводная коррозия Наружные поверхности трубопроводов канальной прокладки. (Постоянное подтопление канала при отсутствии тепловой изоляции на трубопроводе). Внутренние поверхности трубопроводов и оборудования химводоподготовки (деаэраторы, фильтры и т.п.) Внутренние напряжения в металле, коррозия внешним постоянным и переменным током. При неполном погружении трубопровода возможна коррозия по ватерлинии. Характерные коррозионные повреждения: неравномерная коррозия, при воздействии блуждающих токов возможны сквозные поражения стенки трубопровода, язвенные поражения в районе ватерлинии. На трубопроводах горячего водоснабжения возможно протекание процесса микробиологической коррозии железобактериями. Характерные коррозионные повреждения: язвенная коррозия (для внутренних поверхностей трубопроводов), точечная коррозия, неравномерная коррозия.

Ингибиторы коррозии

Ингибитор коррозии представляют собой химические соединения, которые используются для блокирования или задержания процесса образования ржавчины. Ели они есть в агрессивной среде, что процесс образования коррозии на металлических поверхностях сократится в разы.

Ингибиторы образуют на поверхности металлов тонкую защитную пленку, которая не дает проникать в поры металлов воздуху и жидкостям, которые могут нарушить их целостность. Они являются одним из самых эффективных методов борьбы с образованием ржавчины.

Коррозия на авто

Многие современные автомобилисты сталкиваются с тем, что на автомобилях появляется со временем ржавчина. Чаще всего страдает от этого кузов авто. Коррозия автомобиля относится к разряду часто встречающихся ситуаций. Она появляется на тех деталях, которые не сделаны из нержавеющей стали.

Сегодня есть специальные средства, которые предотвращают появление ржавчины на деталях авто. Они представлены различными составами, которые наносятся на поверхность перед п

Методы защиты металлов от коррозии

Коррозия каждый приводит к тому, что появляется большое количество убытков. Они исчисляются миллионами. Ущерб наносится не потому, что коррозия уничтожает металлы, а потому что в результате этого процесса портятся вещи из металлических материалов. В мире применяется большое количество оборудования, которое в большинстве своем сделано из металлической основы. Его стоимость является достаточно высокой. После выхода из строя оборудования не каждая организации имеет возможность приобрести еще одно такого же уровня. Именно поэтому так необходима защита от коррозии.

В современном мире очень важно правильно подобрать средства для борьбы с появлением ржавчины на металлических изделиях. Необходимо перед нанесением краски тщательно подготовить металлическую поверхность. От этого зависит восемьдесят процентов противостояния образованию коррозии. Лакокрасочные материалы, которые наносятся в последующем, обеспечивают лишь двадцати процентную защиту. Сегодня для обработки металлических поверхностей можно использовать специальные преобразователи ржавчины, которые выполняют роль и защиты и грунтовки.

Статьи по теме

Антикоррозионные средства

Антикоррозионные пигменты классифицируются на: цинковые крона, алюминий три-полифосфаты и слюдянистую окись железа.

Защита трубопроводов от коррозии

Сегодня без разных видов трубопроводов невозможно представить себе жизнью Они находятся практически в каждом населенном пункте и обеспечивают коммуникации. Производств труб для прокладки под землей осуществляется из металлов самых разных типов.

Оксидирование

В современном мире имеется большое количество методов, которые используются для борьбы с образованием коррозии на поверхности металлов. Метод образования оксидной пленки является одним из самых эффективных.

Гальваническое покрытие

В современном мире большую популярность получила процедура нанесения на металлические материалы различных веществ, которые предотвращают образование на них коррозийного налета.

Ингибитор коррозии

Ингибитор не является каким-то конкретным веществом. Так называют целуют группу веществ, которые направлены на остановку или задержку протеканий каких-либо физических или физико-химических процессов.

Химическая коррозия

Химическая коррозия – это вид коррозионного разрушения металла, связанный с взаимодействием металла и коррозионной среды, при котором одновременно окисляется металл и происходит восстановление коррозионной среды. Химическая коррозия не связана с образованием, а также воздействием электрического тока.

Движущей силой (первопричиной) химической коррозии является термодинамическая неустойчивость металлов. Они могут самопроизвольно переходить в более устойчивое состояние в результате процесса:

Металл + Окислительный компонент среды = Продукт реакции

При этом термодинамический потенциал системы уменьшается.

По знаку изменения термодинамического потенциала можно определить возможность самопроизвольного протекания химической коррозии. Критерием обычно служит изобарно-изотермический потенциал G. При самопроизвольном протекании химического процесса наблюдается убыль изобарно-изотермического потенциала. Поэтому, если:

Δ GТ > 0, то процесс химической коррозии невозможен;

Δ GТ = 0, то система находится в равновесии.

К химической коррозии относятся:

– газовая коррозия – коррозионное разрушение под воздействием газов при высоких температурах;

– коррозия в жидкостях-неэлектролитах.

Газовая коррозия

Газовая коррозия – наиболее распространенный вид химической коррозии. При высоких температурах поверхность металла под воздействием газов разрушается. Это явление наблюдается в основном в металлургии (оборудование для горячей прокатки, ковки, штамповки, детали двигателей внутреннего сгорания и др.)

Самый распространенный случай химической коррозии – взаимодействие металла с кислородом. Процесс протекает по реакции:

Направление этой реакции (окисления) определяется парциальным давлением кислорода в смеси газов (pО2) и давлением диссоциации паров оксида при определенной температуре (рМеО).

Эта химическая реакция может протекать тремя путями:

1) pО2 = рМеО, реакция равновесная;

2) pО2 > рМеО, реакция сдвинута в сторону образования оксида;

Зная парциальное давление кислорода газовой смеси и давление диссоциации оксида можно определить интервал температур, при которых термодинамически возможно протекание данной реакции.

Скорость протекания газовой коррозии определяется несколькими факторами: температуры окружающей среды, природы металла или состава сплава, характера газовой среды, времени контакта с газовой средой, от свойств продуктов коррозии.

Процесс химической коррозии во многом зависит от характера и свойств образовавшейся на поверхности оксидной пленки.

Процесс появления на поверхности оксидной пленки можно условно разделить на две стадии:

– на поверхности металла, которая непосредственно контактирует с атмосферой, адсорбируются молекулы кислорода;

– металл взаимодействует с газом с образованием химического соединения.

На первой стадии между поверхностными атомами и кислородом возникает ионная связь: атом кислорода забирает у металла два электрона. При этом возникает очень сильная связь, намного сильнее, чем связь кислорода с металлом в окисле. Возможно это явление наблюдается из-за действия на кислород поля, создаваемого атомами металла. После полного насыщения поверхности окислителем, что происходит почти мгновенно, при низких температурах за счет ванн-дер-вальсовых сил может наблюдаться и физическая адсорбция молекул окислителя.

В результате образуется очень тонкая мономолекулярная защитная пленка, которая со временем утолщается, затрудняя подход кислорода.

На второй стадии, из-за химического взаимодействия, окислительный компонент среды отнимает у металла валентные электроны и с ним же реагирует, образуя продукт коррозии.

Если образовавшаяся оксидная пленка будет обладать хорошими защитными свойствами – она будет тормозить дальнейшее развитие процесса химической коррозии. Кроме того, оксидная пленка очень сильно влияет на жаростойкость металла.

Существует три вида пленок, которые могут образоваться:

– тонкие (невидимые невооруженным глазом);

– средние (дают цвета побежалости);

– толстые (хорошо видны).

Чтобы оксидная пленка была защитной, она должна отвечать некоторым требованиям: не иметь пор, быть сплошной, хорошо сцепляться с поверхностью, быть химически инертной по отношении к окружающей ее среде, иметь высокую твердость, быть износостойкой.

Если пленка рыхлая и пористая, кроме того имеет еще плохое сцепление с поверхностью – она не будет обладать защитными свойствами.

Существует условие сплошности, которое формулируется так: молекулярный объем оксидной пленки должен быть больше атомного объема металла.

Сплошность – способность окисла покрывать сплошным слоем всю поверхность металла.

Если это условие соблюдается, то пленка сплошная и, соответственно, защитная.

Но есть металлы, для которых условие сплошности не является показателем. К ним относятся все щелочные, щелочно-земельные (кроме бериллия), даже магний, который важен в техническом плане.

Для определения толщины образовавшейся на поверхности оксидной пленки, изучения ее защитных свойств применяют множество методов. Защитную способность пленки могут определять во время ее формирования, по скорости окисления металла и характеру изменения скорости во времени. Если окисел уже сформировался, целесообразно исследовать толщину и защитные его свойства, нанося на поверхность какой-нибудь подходящий для этого случая реагент (например раствор Cu(NO3)2, который применяется для железа). По времени проникновения реагента к поверхности можно определить толщину пленки.

Даже уже образовавшаяся сплошная пленка не прекращает своего взаимодействия с металлом и окислительной средой.

Влияние внешних и внутренних факторов на скорость протекания химической коррозии.

На скорость химической коррозии очень сильное влияние оказывает температура. При ее повышении процессы окисления идут намного быстрее. При этом уменьшение термодинамической возможности протекания реакции не имеет никакого значения.

Особенно сильно влияет переменный нагрев и охлаждение. В защитной пленке вследствие появления термических напряжений образуются трещины. Сквозь трещины окислительный компонент среды имеет непосредственный доступ к поверхности. Формируется новая оксидная пленка, а старая – постепенно отслаивается.

Большую роль в процессе коррозии играет состав газовой среды. Но это индивидуально для каждого металла и изменяется с колебаниям температур. Например, медь очень быстро корродирует в атмосфере кислорода, но устойчива в среде, содержащей SO2. Никель же наоборот, интенсивно корродирует при контакте с атмосферой SO2, но устойчив в средах O2, CO2 и H2O. Хром относительно устойчив во всех четырех средах.

Если давление диссоциации окисла выше давления окисляющего компонента – окисление металла прекращается, он становится термодинамически устойчивым.

Скорость окисления зависит от состава сплава. Возьмем, к примеру, железо. Добавки серы, марганца, фосфора и никеля не влияют на его окисление. Кремний, хром, алюминий – замедляют процесс. А бериллий, кобальт, титан и медь очень сильно тормозят окисление. При высоких температурах интенсифицировать процесс могут вольфрам, молибден, а также ванадий. Это объясняется летучестью или легкоплавкостью их окислов.

Наблюдая за скоростью окисления железа при различных температурах, отметим что с увеличением температуры самое медленное окисление наблюдается при аустенитной структуре. Она является наиболее жаростойкой, по сравнению с другими.

На скорость протекания химической коррозии влияет и характер обработки поверхности. Если поверхность гладкая, то она окисляется немного медленнее, чем бугристая поверхность с дефектами.

Химическая коррозия в жидкостях-неэлектролитах

Жидкости-неэлектролиты – это жидкие среды, которые не являются проводниками электричества. К ним относятся: органические (бензол, фенол, хлороформ, спирты, керосин, нефть, бензин); неорганического происхождения (жидкий бром, расплавленная сера и т.д.). Чистые неэлектролиты не реагируют с металлами, но с добавлением даже незначительного количества примесей процесс взаимодействия резко ускоряется. Например, если нефть будет содержать серу или серосодержащие соединения (сероводород, меркаптаны) процесс химической коррозии ускоряется. Если вдобавок увеличится температура, в жидкости окажется растворенный кислород – химическая коррозия усилится.

Присутствие в жидкостях-неэлектролитах влаги обеспечивает интенсивное протекание коррозии уже по электрохимическому механизму.

Химическая коррозия в жидкостях-неэлектролитах подразделяется на несколько стадий:

– подход окислителя к поверхности металла;

– хемосорбция реагента на поверхности;

– реакция окислителя с металлом (образование оксидной пленки);

– десорбция оксидов с металлом (может отсутствовать);

– диффузия оксидов в неэлектролит (может отсутствовать).

Для защиты конструкций от химической коррозии в жидкостях-неэлектролитах на ее поверхность наносят покрытия, устойчивые в данной среде.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: