Солнечная электростанция для дома: виды, главные параметры и особенности конструкции

Какую электростанцию на солнечных модулях выбрать для частного дома: обзор от сетевых до автономных

Солнечные электростанции ( СЭС ) включают в себя фотоэлектрические модули ( ФЭМ ), которые преобразуют солнечную энергию в электрическую. В зависимости от комплектации СЭС могут быть с аккумуляторными батареями ( АКБ ), которые накапливают электроэнергию в светлое время суток и могут отдавать ее по мере необходимости в темное время суток или в случае перебоев в электроснабжении. Так же СЭС могут быть без аккумуляторных батарей, такие СЭС позволяют снизить расходы за электроснабжение вашего дома из центральной электросети.

Разберемся, какие комплекты СЭС бывают и как выбрать комплект с учетом ваших индивидуальных потребностей.

Сетевые солнечные электростанции

Не обладают аккумуляторными батареями за счет чего цена на них значительно ниже аналогов с АКБ . Электроэнергия выработанная устройством отправляется во внутреннюю сеть вашего дома, к используемым электроприборам, а если выхода к устройству-потребителю нет, то электроэнергия может отдаваться во внешнюю сеть для продажи вашему гарантирующему поставщику и последующего взаимозачёта. Когда солнечного света недостаточно, а также, когда мощности сетевой электростанции не хватает, система переключается на питание от центральной сети.

Схема подключения сетевой системы

Основное преимущество сетевых СЭС в уменьшении электропотребления из центральной сети и как следствие снижение расходов на электроэнергию.

Плюсы и минусы

Сетевые солнечные электростанции используются для снижения потребляемой электроэнергии от центральной сети общего пользования.

Привлекают такие СЭС низкой ценой, что вытекает из простоты конструкции. Они состоят из фотоэлектрических модулей, которые улавливают свет, и инвертора, который позволяет постоянный ток преобразовать в переменный, необходимый для работы приборов. Конструкция простая, неприхотливая и надежная.

Главный минус сетевых электростанций – невозможность автономной работы. Один из главных параметров при выборе – это надежность всех компонентов в составе солнечной электростанции. Помните, что расчетный срок службы, приобретаемой вами СЭС , 25-30 лет. В течение такого длительного срока без поломок, неожиданного выхода из строя и возникновения необходимости замены компонентов системы способно проработать только, действительно, качественное оборудование. Совет специалистов – не экономьте на качестве при выборе компонентов СЭС . Самое дешевое на рынке оборудование – обычно и самое ненадежное, или может иметь урезанный функционал. Особенно важно, выбрать качественные солнечные панели ( ФЭМ ) и надежный сетевой инвертор. Наиболее долговечными и производительными солнечными панелями считаются сейчас монокристаллические и гетероструктурные ФЭМ . КПД таких солнечных панелей составляет 17-23%, у них самые низкие показатели деградации (падения производительности со временем).

Гетероструктурные, к тому же, имеют самые лучшие показатели производительности при облачной или пасмурной погоде. Гетероструктурные модули входят в комплект «Базовый» от Мосэнергосбыт.

Фотоэлектрический модуль HVL 290, который предлагается в данном комплекте, изготовлен отечественным производителем «Хевел» с использованием гетероструктурных технологий. Эти модули отличаются низкими показателями деградации и длительной гарантией на сохранение мощности – 25 лет.

Автономные электростанции на солнечных модулях

Такие СЭС нужны для обеспечения электричеством домов, которые по каким-либо причинам не могут быть подключены к центральной сети. Они могут выступать как самостоятельные источники энергии, так и использоваться совместно с электрогенераторами.

Ток, вырабатываемый солнечной электростанцией в светлое время суток поступает на приборы и заряжает аккумуляторную батарею. В условиях недостаточной освещённости или в темное время суток расходуется заряд аккумулятора.

Схема подключения автономной системы

Наличие АКБ значительно повышает стоимость автономных солнечных электростанций, однако, при значительном удалении и отсутствии возможности подключения к центральной электросети установка такой станции может быть единственной возможностью для электрификации вашего дома.

Помимо постоянного снабжения электричеством домов, которые не подключены к общей сети, такие электростанции могут помочь сократить время работы генераторов (при их наличии), продлить амортизационный ресурс, увеличить сроки между обязательными техническими обслуживаниями ( ТО ) и снизить расход топлива.

Плюсы и минусы

Помимо высокой цены, недостатком является и необходимость периодической замены аккумуляторных батарей. Частота смены аккумулятора зависит от интенсивности использования и режима работы, соблюдения рекомендаций производителя по глубине предельного разряда и по температурным режимам в ходе эксплуатации. При выборе солнечных электростанций нужно обратить внимание на такие характеристики, как:

  • тип батареи;
  • ёмкость батареи;
  • количество циклов заряда/разряда;
  • рекомендованные температуры внешней среды, оптимальные для работы аккумуляторной батареи, и возможность их соблюдения владельцем на практике.

Шаг в будущее, или солнечные электростанции: виды, отличия, достоинства, цена

Для своих нужд человечеству требуется все больше энергии, но, сталкиваясь с проблемами централизованных сетей, снабжающих ею дома, становится понятным, почему необходим поиск альтернативных источников энергии, среди которых главными является солнечная электростанция.

Описание

Производство энергии тепловыми электростанциями сопряжено с использованием дорогого топлива. К тому же, работа подобных электростанций солнечных негативно отражается на экологической ситуации всей планеты.

Меньше загрязняет окружающее пространство гидроэлектростанция. Однако, для ее строительства необходимы значительные затраты финансовые, трудовые и временные.

Все больше внимание поэтому приковано к солнечной энергии.

Читайте также:
Цвет мебели бук + фото

Топливо же для рассматриваемых электростанций бесплатное. Электростанции солнечные, с экологической точки зрения, также являются идеальны.

Возрастающий интерес к данной энергии объясняется ее экономичностью и неиссякаемостью. Солнечные электростанции применяют в частном секторе и на объектах промышленных, чтобы не допустить перебоев с поставкой электроэнергии.

Решение по установке их принимается часто связано с серьезной изношенностью практически всех подстанций. От случаев отключения электричества солнечная электростанция для дома надежно защитит жилище.

Устройство

Комплект для электростанции включает:

  • солнечных модуль батарей;
  • инвертор и контроллер;
  • аккумулятор энергии.

Первый образован полупроводниковыми ячейками, генерирующими под воздействием солнца электроэнергию, накапливается которая аккумулятором, питающим потребителей и инвертор. Накопленная батареей энергия постоянного тока, последний преобразовывает в ток переменный. Его частота составляет 50 Герц. Именно такой ток необходим бытовым приборам.

Контроллера выполняет функцию управления зарядкой и разрядкой аккумуляторной батареи. Он включает ее в случае необходимости для подзарядки или, чтобы избежать разрядки ее током утечки, отключает.

Принцип действия

Он необычайно прост. Энергия, даруемая природой, преобразуется в электричество благодаря оптическим элементам. Последние обладают способностью концентрировать отраженные лучи в заполненных маслом или водой приемниках.

Под действием высокой температуры, жидкость или маслянистый теплоноситель нагреваются, благодаря чему запускается генератор, вырабатывающий электричество.

Другими словами, воздействующие на солнечные батареи лучи, а точнее на составляющие их кремневые частицы. Последние высвобождают электроны, огромное число которых способствует выработке электричества.

Если отражающие элементы снабжены механизмами, позволяющими следовать за движением солнца, эффективность их возрастает по сравнению с теми, которые таковых не имеют, отчего КПД их сводится к минимуму.

Максимальный сбор солнечной энергии обеспечивает конструкция с вогнутой отражающей поверхностью.

Многие солнечные конструкции оснащаются аккумуляторами, чтобы работа была бесперебойной

Рекомендуем:

  • Солнечные электростанции для дачи: особенности, цена и где купить — ТОП-6
  • Теплоаккумулятор для отопительных котлов: виды, достоинства, цена
  • Схема подключения солнечных батарей загородного дома

Одной батареи солнечной недостаточно, чтобы получить нужное количество энергии, поэтому их монтируют блоками.

Устанавливается система блоков на крыше жилища, но предварительно оборудуют соответствующим образом площадку со специальными опорами.

Выработанная солнечной электростанцией для дачи энергия направляется в агрегат под названием «инвертор». Он установлен внутри помещения. Там из преобразованных электронов вырабатывается ток, который накапливается в аккумуляторе.

Установка фотоэлементов

Устанавливаются они по специальной методике:

  • для увеличения производительности выставляется под углом 90 градусов к падающим лучам поверхность блоков;
  • допустимая погрешность (учитывая, что Светило движется) от перпендикулярного положения не может превышать 15 градусов;
  • при всесезонном пользовании электростанцией, необходимо угол выставить относительно широты в столько же градусов, но со знаком «+», т.е. +15 градусов;
  • если предполагается пользоваться станцией только в жаркое время, отталкиваются от значения угла в – 15 градусов.
    Только, установив солнечную батарею под углом в 90 градусов к падающим лучам, можно рассчитывать на максимальную эффективность. Увеличить отдачу до полутора раз возможно, если батарею солнечную закрепить на поворотном устройстве, способном двигаться вслед за перемещением Солнца. Способ рассчитан на небольшие конструкции.

Типы СЭС

Их делят по принципу функционирования на два подвида:

  1. использующие солнечную энергию для подогрева воды и пара, заставляющего вращаться турбины;
  2. функционирующие благодаря применению фотоэлементов (прямое преобразование энергии солнца в электрическую).

Конструктивно электростанции бывают:

  • башенными;
  • тарельчатыми;
  • имеющими параболический концентратор.

Общее у них то, что для аккумулирования тепла используют труба или емкость с водой.

Все они используются в промышленности, поскольку окупаются при значительных мощностях. До, и для их установки требуется значительная площадь. Высота башенных, например, зачастую достигает 250 м, а необходимая площадь — 200 га. Понятно, что для использования быту они неприемлемы.

Станции, использующие способность генерировать ЭДС в полупроводниковых переходах, облучаемых солнечным потоком, преобразуют его в энергию электрическую с КПД лежащем в пределах от 10 до 40%. Это высокий показатель подобных станций, даже с учетом суточного неравномерного освещения. Но, и площади для их монтажа тоже большие нужны.

Башенного типа

У таких установок имеется резервуар на вершине, предназначенный для заполнения водой. Ее окрашивают в черный цвет, который обладает максимальной теплопроводностью. Притягивая лучи, вода нагревается и начинает испаряться, образуя конденсат.

Он попадает в парогенератор и идет на обогрев. КПД таких устройств недостаточно большой, поскольку температура нагрева жидкости в жаркие дни может достигать 700 градусов, что для этого. Коэффициент превышает величину характерную для подобного типа устройств. Применяют этот альтернативный источник в промышленности.

Тарельчатые модульные установки

Принцип их действия схож с предыдущей конструкцией, но составляет их не сплошной материал, а зеркальные модули, а также приемник с жидкостью и отражатель. Сложность их монтажа в том, что проводить его приходится на высоте.

Работает это так:

Попавшие на один из имеющихся приемников солнечные лучи перенаправляются на отражатель. Последний, их отражает, и концентрированные лучи формирует в энергию. Очень распространены такие электростанции в Нидерландах и Америке, точнее в Калифорнии — самом солнечном регионе США.

Читайте также:
Токовая нагрузка по сечению кабеля

Использующие фотобатареи

В их состав входят: разной мощности и размеров фотоэлементы (а также иных показателей). Подобные солнечные электростанции легко собрать самостоятельно. Они эффективны для снабжения энергией небольших промышленных объектов, дач и загородных домов.

Для каждого конкретного случая важно грамотно подобрать параметры и определиться, какая нужна электростанция — стационарная или переносная. Единственный модуль электростанции подключается к аккумулятору.

Применяющие конденсаторы

Отличаются эти солнечные электростанции наличием инвертора. Используется подобное оборудование в регионах с ограниченным числом ярких и солнечных дней в году. Для увеличения концентрации лучей изменяют угол приемника.

Космические электростанции

Их еще называют аэростатными. Инновационные конструкции стали возможны благодаря уровню развития, который достигла современная наука. В них ходят помимо комплектов модулей, приемники с отражателями, расположены которые за пределами земной орбиты – на станциях орбитальных.

Преимущество электростанций в том, что они способны принимать намного больше солнечных лучей, чем электростанции наземные. К недостаткам относится высокая стоимость.

Комбинированные

Образованы они могут быть электростанциями:

  • ветровыми;
  • водяными;
  • и, конечно, солнечными.

Самое сложное в их установке заключается в способности грамотно разработать проект, который позволит максимально эффективно использовать каждый тип, вошедших в состав электростанций.

Преимущества

Преимущества электростанций, использующих энергию солнца:

  • Доступность энергии;
  • Неограниченность, или неисчерпаемость;
  • Не нанесение экологии вреда;
  • Продолжительный (до 25 лет) срок функционирования;
  • Независимость от централизованных поставок энергии;
  • Не нуждается в регулярном обслуживании;
  • Бесшумная работа;
  • Дешевизна.

Минусы

  • Не высокий КПД. Но, в сравнении с иными альтернативными электростанциями, она считается наиболее эффективной и самой надежной. Да, и КПД можно увеличить, установив вместо одной, несколько панелей. Сохраняемой одним аккумулятором энергии вряд хватит даже для работы компьютера;
  • Зависимость времени суток и сюрпризов погоды. Холодной зимой эффективность снижается в 3-10 раз. Емкостная база зависит напрямую от частоты попадания солнечных лучей, т.е. от солнечных дней. В непогоду, понятно, энергии недостаточно для покрытия потребностей пользователей;
  • Необходимость в дополнительном оборудовании, включая аккумулятор энергии;
  • Высокая первичная цена на закупку и установку оборудования;
  • Очистка оптических систем и солнечных элементов.

Обзор цен

Купить солнечную электростанцию можно в Российской Федерации, Казахстане и Белоруссии, а также в других странах СНГ. Но, необходимые ресурсы для установки электростанции есть не везде. Значит и целесообразность в ее установке ставится под сомнение.

Стоимость может варьировать в разных регионах, но в среднем не превышает 950 тысяч рублей.

Покупать такие станции рекомендуется у брендовых компания:

  • Gerber,
  • Activ Solar и пр.

Можно изготовить их и самостоятельно или воспользовавшись помощью опытных инженеров, что, согласно данным статистики, происходит достаточно часто. Это позволяет существенно сэкономить.

Где приобрести Цена в рублях
http://satom.ru/t/solnechnye-elektrostancii-1244/?sort=rating&display=gallery от 3163
https://www.avito.ru/rossiya/dlya_doma_i_dachi?q=солнечная+электростанция от 2550
http://gws-energy.ru/solnechnye-elektrostantsii по запросу
https://www.pulscen.ru/price/050905-solnechnaya-elektrostantsiya от 2190
https://ru.all.biz/elektrostancii-solnechnye-bgg1094312 уточнять

Критерии выбора

Чтобы правильно подобрать электростанцию, важно знать такую характеристику, как мощность планируемых к постоянному использованию приборов, работающих в непрерывном режиме. Поэтому желательно те, которые не относятся к жизненно необходимым. Сауны, сварочное оборудование, не стоит включать в общий список.

Нельзя обойтись без обеспечения водой, сигнализации и освещения жилья, системы отопления и бытовых приборов для кухни.

Просуммировав мощность всех приборов, к ней добавляют запас, обеспечивающий эффективное функционирование бытовой техники – холодильника, телевизора, микроволновки, пылесоса, глубинного насоса и др.

Полученное значение служит определяющим при выборе СЭС.

Выпускаются такие источники дополнительной энергии, многими производителями, в том числе, российской компанией «Солнечная энергия». Мощность солнечных электростанции в России лежит в диапазоне от сотен ватт до десятков киловатт. Понятно, что и цена на них сильно разнится. Она составляет 3500-500000 рублей.

Видео: Как это работает ? Солнечная электростанция

Солнечная электростанция: устройство, компоненты Комментировать

Поэтому в этой статье мы постараемся рассказать что же такое солнечная электростанция (СЭ) и из чего они состоит, какие бывают варианты и сколько приблизительно стоят.

Например, давайте рассмотрим солнечную электростанцию для частного дома, т.к. это наиболее частное ее применение среди жителей России.

Из чего состоит солнечная электростанция

Наиболее типичная солнечная электростанция состоит из 4-х основных компонентов:

  1. Солнечная панель
  2. Контроллер заряда
  3. Аккумулятор
  4. Инвертор

Ниже приведён схематический рисунок солнечной электростанции с указанием того, как соединяются между собой все компоненты системы.

Соединительное и защитное оборудование пока во внимание не принимаем, они них мы расскажем в отдельной статье.

Теперь подробнее рассмотрим каждый из компонентов солнечной электростанции.

1. Солнечные панели

Солнечные панели или еще их называют солнечными батареями – это , наверное, самый ключевой компонент солнечной электростанции. Основная задача солнечных панелей – это преобразование солнечной энергии в электрическую.

Номинальная мощность

Сама солнечная панель состоит из ячеек кристаллического кремния, ещё эти ячейки называют солнечными элементами. Количеством таких солнечных элементов определяется номинальная мощность солнечной панели. Так, солнечные панели бывают мощность 100, 150, 200, 250, 300Вт. Есть и другие номиналы, но это самые популярные. Так вот, солнечная панель мощностью 300Вт, здесь 300Вт – это максимальная мощность, которую может выдать солнечная панель. В идеальном случае, за один час выработка такой солнечной панели составит 300Вт*ч.

Читайте также:
Чем обработать потолок и как приклеить плитку на побелку

Ниже показаны несколько вариантов солнечных панелей, кликнув на каждый из них, можно детально посмотреть на характеристики и на фотографии в высоком разрешении :

Выработка электроэнергии

Выработка электроэнергии солнечной панелью сильно зависит от внешних факторов. По факту, заявленную номинальную мощность панель может обеспечить только в идеальных условиях, когда солнечные лучи падают на поверхность солнечной панели под прямым углом. Также выработка электроэнергии зависит от интенсивности самого солнечного излучения. В России пик интенсивности солнечного излучения приходится на июнь-июль. При неблагоприятных погодных условия, например, облачность, дождь или просто пасмурная погода, выработка электроэнергии снижается. Меньше солнца – меньше выработка.

Для примера, ниже показан график выработки электроэнергии четырьмя поликристаллическими солнечными панелями мощностью по 250Вт. Видно, что пик выработки приходится на период май-июль, в эти месяцы в сутки будет сгенерировано до 5кВт*час энергии. Минимум приходится на период ноябрь-январь. В зимние месяцы выработка вообще может снижаться в 10-15 раз по сравнению с летним периодом.

График приведён из расчета расположения солнечных панелей в Казани с углом наклона

50° c ориентацией на юг.

Помимо мощности, солнечные панели еще отличаются номинальным рабочим напряжением.

  • до 200Вт – 12 вольт
  • от 200Вт (включительно) – 24 вольта

Номинальное напряжение солнечных панелей необходимо знать для правильного подбора остальных компонентов системы.

Монокристалл, поликристалл

Как было написано выше, ячейки солнечной панели изготовлены из кристаллического кремния, только сам кремний тоже бывает разного типа:

  • Монокриллический. Наивысшая эффективность (КПД), стоят немного дороже.
  • Поликристаллический. Эффективность меньше (обычно на 1-2%) чем у монокристалла, но стоят дешевле.

Есть мнение, что поликристаллические солнечные панели лучше подходят для климата с частной пасмурно или облачной погодой, якобы они лучше поглощаю рассеянный свет, но явно это не замечено. Если такой эффект есть, то он совсем незначительный.

Соединение солнечных панелей

Для увеличения мощности солнечные панели соединяют в массив, например, 4 солнечные панели номинальной мощностью 250Вт могут выдать суммарную мощность 1кВт. При этом, солнечные панели можно соединить между собой 3 различными способами:

  • Параллельное соединение. При этом типе соединения номинальное напряжение 4-х соединёных солнечных панелей останется 24 вольта, ток увеличится в 4 раза.
  • Последовательное соединение. Здесь наоборот, номинальное напряжение увеличится в 4 раза и составит 96 вольт, а значение тока останется на уровне, соответствующей одной панели.
  • Параллельно-последовательное соединение. Если параллельно соединить две пары последовательное соединённых солнечных панелей до номинальное напряжение составит 48 вольт, а ток увеличится в 2 раза.

Какой тип соединения нужно использовать в том или ином случае, главным образом зависит от периферийного оборудования, а именно контроллера заряда, инвертора и планируемого количества аккумуляторов.

На этом про солнечные панели пока всё, далее переходим к контроллерам заряда.

2. Контроллер заряда

Контроллера заряда – это промежуточное, но очень важное звено между солнечными панелями и аккумуляторами, он по своей сути управляет потоком энергии от первого ко второму, т.е. управляет процессом заряда аккумулятора, защищает от его перезаряда и закипания.

Чтобы лучше понять для чего необходим контроллер заряда, давайте рассмотрим очень простую солнечную электростанцию состоящую из одной монокристаллической солнечной панели мощностью 150Вт, одного контроллера заряда и одного аккумулятора.

Панель мощностью 150Вт, как было написано выше, её номинальное напряжение составляет 12 вольт, но у неё есть еще такой важный параметр как рабочее напряжение и оно составляет Vmp

17.6В, а также напряжение холостого хода Voc=21.7В, такое напряжение выдаёт солнечная батарея без подключенной нагрузки, т.е. без какого-либо потребителя. Если вы попробуете подключиться вольтметром к клеммам + и солнечной панели, то как раз получите напряжение

21.7В. Все эти параметры указываются на специальной наклейке на обратной стороне солнечной панели.

Можно ли обойтись без контроллера

Теперь что произойдёт, если солнечную панель подключить напрямую к аккумулятору? Это просто в очень короткий срок выведет аккумулятор полностью из строя, т.к. допустимое напряжение на клеммах аккумулятора не должно превышать

14В, а солнечная панель, как вы уже знаете, выдаст большее на несколько вольт значение. Т

Если аккумулятор был разряжен, то он конечно же зарядится, но далее пойдет процесс перезаряда (не путать с повторным зарядом, здесь речь идёт заряде сверх нормы) с последующим его закипанием. Контроллер заряда как раз всё это предотвращает, поддерживает требуемый уровень напряжения на клеммах аккумулятора, отключает заряд, если аккумулятор уже заряжен, предотвращает разряд аккумулятора в тёмное время суток, т.к. если нет выработки, от солнечные панели сами могут стать потребителем. Всё это в купе продлевает срок службы аккумулятора.

Читайте также:
Теплонагреватели бытовые электрические
Типы контроллеров

Контроллеры заряда бывают двух типов, MPPT и ШИМ.

  • MPPT ( сокр. от англ. Maximum Power Point Tracking) (эМППТ) слежение за точкой максимальной мощности.
  • ШИМ (Широтно-импульсная модуляция, на анл. PWM Puls Width Modulation).

Первые эффективнее, но стоят дороже. ШИМ контроллеры обычно устанавливаются на маломощных солнечных электростанциях, с небольшим количеством солнечных панелей.

3. Аккумуляторы

Аккумуляторы позволяют накапливать электрическую энергию, вырабатываемую солнечными панелями и использовать её после захода солнца.

Стартерные или автомобильные

Часто встречаются варианты, когда владельцы солнечных электростанций в своих системах используют обычные автомобильные стартерные свинцово-кислотные аккумуляторы. Мы не советуем это делать, поскольку такие аккумуляторы не предназначены для использования в системах резервного или автономного электроснабжения. Основная задача таких аккумуляторов – это выдать большой пусковой ток для запуска двигателя, затем восполнить потраченный заряд от генератора. Такие аккумуляторы не предназначены для эксплуатации в режиме полного разряда. Буквально через несколько таких циклов они могут полностью выйти из строя и единственно что с ними можно будет сделать – это сдать на утилизацию.

Глубокого разряда

Наиболее оптимальные аккумуляторы для использования в солнечной энергетике – аккумуляторы глубокого разряда. Почти у каждого брендового производителя есть специальная серия таких аккумуляторов, чаще всего они изготовлены по технологии
AGM и/или GEL.

На что способны такие аккумуляторы:

  • Цикличная работа в режиме глубокого разряда/разряда
  • Малый ток саморазряда
  • Широкий рабочий диапазон температур
  • Полностью герметичные, нет выделений паров кислоты
  • Срок службы до 12 лет в буферном режиме
Ёмкость аккумуляторов

Кроме технологии изготовления, аккумуляторы также отличаются ёмкостью, чем больше ёмкостью, тем больше количество энергии в нём запасено. Например, если рассмотреть аккумулятор ёмкостью 100А*ч, то запасенная полезная мощность в нём составляет

800Вт, это означает, есть к системе подключена нагрузка, например, с потреблением 150Вт*ч, то аккумулятор сможет проработать около 5 часов.

Наиболее часто используемый аккумулятор в солнечных электростанциях для дома – это аккумулятор ёмкостью 200А*ч. Запасённая мощность в нем

1.5кВт. Кстати, весит такой аккумулятор около 60 килограмм.

Соединение аккумуляторов

Для создания системы с большим резервом автономности необходимо увеличивать количество аккумуляторов. Соединение аккумуляторов можно реализовать по тому же принципу, что и солнечные панели. Какой именно тип соединения использоваться зависит от номинального напряжения контролера заряда и инвертора. Так, если контроллер на 24В, то аккумуляторы (2 шт.) нужно соединять последовательно, чтобы также получить 24В. Если контроллер на 12В, а имеется два аккумулятора, то их нужно соединять параллельно.

С соединением и эксплуатацией аккумуляторов много нюансов, нам часто задают такие вопросы как, можно увеличить ёмкость системы просто докупив еще один аккумулятор, можно ли соединять аккумуляторы разной ёмкости, для чего нужно использовать балансиры заряда и пр. Об всём этом мы расскажем в отдельных статьях.

4. Инвертор

Инвертор – это устройство, которое преобразует постоянное (DC, сокр. от англ. Direct Current) напряжение аккумуляторных батарей в привычное нам переменное (AC, сокр. от англ. Alternating Current ) напряжение

220В с частотой 50Гц. Без инвертора можно будет пользоваться только постоянным напряжением 12В, у контроллера заряда есть специальные клеммы для этого, но если нужно подключать бытовые электро-приборы, то без инвертора не обойтись.

Инверторы, применяемые в солнечной энергетике, можно разделить на 3 вида:

    Автономные инверторы. Такой тип инверторов клеммами подключается к аккумулятору. На одной из сторон корпуса имеется разъем под вилку, для подключения нагрузка. Такой тип инвертор можно использовать вовсе без солнечных панелей, т.к. они оснащены входом

220В, т.е. они умеют делать не только DC/AC преобразование, но работать в обратном направлении, а именно заряжать аккумулятор от сети 220В. Такой тип инверторов должен работать в паре с контроллером заряда.

  • Гибридные инверторы. Это по сути 2 прибора в 1 корпусе: контроллера заряда и инвертор. т.е. нет необходимости в отдельном контроллере заряда к в случае с автономным инвертором. Солнечные панели подключаются напрямую к инвертору, а именно к встроенному контроллеру. У данного типа солнечных инверторов также есть возможность работы с входящим напряжением 220В.
  • Сетевые инверторы. Похожи на гибридный инвертор, также есть встроенный контроллер заряда, только работает такой инвертор без аккумуляторов, вся вырабатываемая солнечными панелями электроэнергия преобразуется в 220В и подаётся на нагрузку, т.е. потребители. Неизрасходованная электрическая энергия через двунаправленный счётчик электроэнергии подаётся во внешнюю (магистральную) электрическую сеть по зелёному тарифу (прим., в России зелёный тариф не действует). Такой тип инверторов наиболее популярен в Европе и США.
  • Ниже, как раз, приведены карточки товара автономного инвертора СибВольт, гибридного инвертор SILA и сетевого инвертора Sofar. Каждый из них с номинальной мощность 3000Вт. Кликнув на фотографию можно посмотреть детальные технические характеристики, описание и фотографии.

    Читайте также:
    Штангенглубиномер: что это такое? Устройство и принцип работы

    Теперь у вас есть некоторые представление о солнечной электростанции, из каких компонентов состоит, какие характеристики бываю и на что нужно обращать внимание.

    Примеры солнечных электростанций

    Чтобы вы могли прикинуть сколько может стоить солнечная электростанция, ниже представлены готовые комплекты для дачи, для дома, а также сетевая электростанция. Кликнув на фотографию, откроется карточка товара с подробными описанием.

    Подбор индивидуального комплекта

    Если вы хотите подобрать для себя солнечную электростанцию, но не знаете с чего начать или не знаете какое оборудование подобрать по вы можете пройне небольшой опрос, по результатом которого мы подберём для вас оптимальный комплект оборудования

    А если вы из Казани и хотите купить солнечную электростанцию, то для вас всё еще проще – можете приехать к нам в офис, посмотреть “в живую” на оборудование и подобрать оптимальный для себя комплект. Как до нас добрать вы можете посмотреть на нашей странице контактов.

    Добавить комментарий Отменить ответ

    Добро пожаловать в блог

    Вы попали в блог компании REENERGO. Здесь мы стараемся регулярно публиковать полезные и интересные новости и статьи из области альтернативной энергетики.

    Использование солнечной энергии, солнечная энергетика – история развития, плюсы и минусы

    Мода на альтернативную энергетику набирает обороты. Причем в центре внимания оказываются возобновляемые источники энергии – приливы, ветер, солнце. Солнечная энергетика (или фотоэнергетика) считается одним из наиболее динамично развивающихся отраслевых секторов. Нередки совсем уж оптимистичные заявления вроде того, что вся энергетика грядущих времен будет, ни много ни мало, базироваться на солнечной энергетике.

    Строго говоря, энергия звезды по имени Солнце в «законсервированном» виде присутствует во всех видах ископаемого топлива – угле, нефти, газе. Энергия эта начала накапливаться еще на стадии роста растений, потребляющих солнечный свет и тепло, которые вследствие сложных биологических процессов превратились в углеродные ископаемые. Энергию воды, ее кругооборот также поддерживает Солнце.

    Плотность солнечной энергии у верхней границы атмосферы составляет 1350 Вт/м2, она носит название «солнечная постоянная». При прохождении солнечных лучей через атмосферу Земли часть излучения рассеивается. Но и у самой поверхности Земли его плотность достаточна для возможного использования, причем даже в облачную погоду.

    История развития

    Фотогальванический эффект (т.е. возникновение стационарного тока в однородном материале при его однородном фотовозбуждении) был открыт в 1839 году французским физиком Александре-Эдмондом Бекверелом. Немногим позже англичанин Уиллобай Смит и немец Генрих-Рудольф Герц независимо друг от друга открыли фотопроводимость селена и ультрафиолетовую фотопроводимость.

    В 1888 году в Америке было запатентовано первое «устройство утилизации солнечного излучения». Первые достижения российских ученых в области фотопроводимости относятся к 1938 году. Тогда в лаборатории академика Абрама Иоффе впервые был создаэлемент для преобразования солнечной энергии, который планировалось применять в солнечной энергетике.

    Развитию наземной солнечной энергетики предшествовала большая работа ученых (в том числе ленинградско-петербургской научной школы – физтеховцев Бориса Коломийца и Юрия Маслаковца) в области солнечных батарей космического назначения. Они создали в Ленинградском физикотехническом институте серноталлиевые фотоэлементы, КПД которых равнялся 1% – настоящий рекорд для того времени.

    Абрам Иоффе стал также автором популярного нынче решения устанавливать фотоэлементы на крышах (хотя поначалу идея широко не прижилась лишь по той причине, что недостатка в ископаемом топливе в то время никто не испытывал). Сегодня же такие страны, как Германия, США, Япония, Израиль, все активнее ставят на крышах зданий солнечные батареи, создавая таким образом «энергосберегающие дома».

    Более оживленный интерес солнечная энергетика начала вызывать во второй половине XX века. Благодаря практическим разработкам в этой области были созданы теплоэлектростанции, где теплоноситель нагревался за счет прямого солнечного излучения, а турбоэлектрогенератор приводил в действие образующийся в котле пар.

    По мере накопления знаний и продвижения от теории к практике возник вопрос рентабельности солнечной генерации. Поначалу задачи солнечной энергетики не простирались дальше энергообеспечения локальных объектов, например труднодоступных или удаленных от центральной энергосистемы. Еще в 1975 г. суммарная мощность всех солнечных установок на планете составляла всего 300 кВт, а стоимость пикового киловатта мощности достигала 20 тыс. долларов.

    Принцип действия солнечных электростанций:

    Но, конечно, для старта солнечной энергетики – даже без учета экономической составляющей – требовалась существенно большая эффективность. И ее удалось в какой-то степени добиться. КПД современных кремниевых полупроводниковых генераторов равен уже 15-24% (смотрите – Эффективность солнечных элементов и модулей), благодаря чему (а также падению их в цене) сегодня наблюдается устойчивый спрос.

    Выпуск солнечных батарей освоили крупные мировые компании – такие, как Siemens, Kyocera, Solarex, BP Solar, Shell и другие. Стоимость одного ватта установленной электрической мощности на полупроводниковых фотоэлементах снизилась до 2 долларов.

    Еще в советское время было рассчитано, что установленные в районе Аральского моря 4 тыс. км 2 солнечных модулей способны обеспечить покрытие годовой потребности в электроэнергии всего земного шара. А КПД тогдашних батарей не превышал 6%.

    Читайте также:
    Электрическая духовка настольная

    В прошлом веке 10-мегаваттные солнечные электростанции (СЭС) были созданы в США, Франции, Испании, Италии и других «солнечных» странах. В СССР первая экспериментальная солнечная станция мощностью 5 МВт была построена на Керченском полуострове, где количество солнечных дней в году одно из самых высоких в регионе.

    Некоторые из этих станций еще работают, многие прекратили функционирование, но можно с уверенностью утверждать, что они не могут принципиально конкурировать с современными солнечными фотоэлектрическими системами.

    Сильные стороны солнечной энергетики всем очевидны и в пространных пояснениях не нуждаются.

    Во-первых, ресурсов Солнца хватит надолго – продолжительность существования звезды оценивается учеными примерно в 5 млрд. лет.

    Во-вторых, использование солнечной энергии не грозит выбросами парниковых газов, глобальным потеплением и общим загрязнением окружающей среды, т.е. не влияет на экологический баланс планеты.

    Фотоэлектрическая станция мощностью 1 МВт за год производит порядка 2 млн. кВт . ч. Тем самым предотвращается эмиссия углекислого газа по сравнению с топливной электростанцией в следующих объемах: на газе около 11 тыс. тонн, на нефтепродуктах 1,1-1,5 тыс. тонн, на угле 1,7-2,3 тыс. тонн.

    К узким местам солнечной энергетики относятся, во-первых, все еще недостаточно высокий КПД, во-вторых, недостаточно низкая себестоимость киловатт-часа – то, что вызывает вопросы в связи с широким использованием любого возобновляемого источника энергии.

    К этому добавляется тот факт, что изрядное количество солнечных излучений у поверхности Земли рассеивается неконтролируемо.

    Экологическая безопасность тоже, строго говоря, под вопросом – ведь как быть с утилизацией отработанных элементов, пока неясно.

    Ну и, наконец, степень изученности солнечной энергетки – что бы ни говорили – пока далека от совершенства.

    Наиболее «слабым звеном» солнечной энергетки является низкий КПД батарей, решение этой проблемы – вопрос лишь времени.

    Использование

    Да, получение энергии из Солнца – проект не самый дешевый. Но, во-первых, за последние тридцать лет один ватт, выработанный посредством фотоэлементов, подешевел в десятки раз. А во-вторых, «на руку» солнечной энергетике играет стремление европейских стран снизить зависимость от традиционных энергоносителей. Кроме того, не стоит забывать о Киотском протоколе. Сейчас можно сказать, что солнечная энергетика развивается уверенными темпами и с точки зрения науки, и с точки зрения коммерции.

    Сегодня солнечная энергия наиболее активно используется в трех целях:

    отопление и горячее водоснабжение, а также кондиционирование воздуха;

    конвертация в электрическую энергию с помощью солнечных фотоэлектрических преобразователей;

    масштабное производство электроэнергии на основе теплового цикла.

    Солнечную энергию не обязательно конвертировать в электрическую, а вполне можно использовать как тепловую. Например, для отопления и горячего водоснабжения жилых и промышленных объектов.

    В основе принципа работы конструкции солнечных нагревательных систем – нагревание антифриза. Затем тепло передается в баки-аккумуляторы, расположенные обычно в подвале, и расходуется оттуда.

    Одним из крупнейших потенциальных потребителей фотоэнергетики является сельскохозяйственный сектор, который самостоятельно способен потреблять сотни мегаватт пиковой энергии фотоэнергосистем в год. К этому можно добавить навигационное обеспечение, энергообеспечение систем телекоммуникаций, систем для курортно-оздоровительного и туристического бизнеса, а также коттеджей, уличных солнечных фонарей и т. д.

    Сегодня всерьез рассматривается возможность абсолютно фантастических, с точки зрения обывателя, способов применения солнечной энергетики. Например, проекты орбитальных солнечных станций или, что еще фантастичнее, солнечных электростанций на Луне.

    И такие проекты действительно есть. В космосе концентрация солнечной энергии значительно выше по сравнению с нашей голубой планетой. Передача энергии на Землю возможна с помощью направленного светового (лазерного) или сверхвысокочастотного (СВЧ) излучения.

    Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

    Подписывайтесь на наш канал в Telegram!

    Просто пройдите по ссылке и подключитесь к каналу.

    Не пропустите обновления, подпишитесь на наши соцсети:

    Преимущества и недостатки солнечной энергии

    Вредна ли солнечная энергия для окружающей среды? Достаточно ли эффективны солнечные панели для питания вашего дома? Сколько стоят солнечные панели? Узнайте все о том, как солнечная энергия переводит мир на возобновляемые источники энергии.

    Когда мы говорим о возобновляемых источниках энергии, невозможно не упомянуть самый изобильный доступный нам источник: солнце. Количество солнечной энергии, произведенной всего за один час, может обеспечить годовой запас электроэнергии для всего мира! С таким безграничным ресурсом неудивительно, что правительства адаптируют наше глобальное энергоснабжение к солнечной энергии. Но, как и во всем остальном, есть также преимущества и недостатки солнечной энергии, которые следует учитывать, в том числе, является ли солнечная энергия более вредной для окружающей среды, чем мы думали вначале.

    По мере того, как все больше населения мира получает доступ к электричеству, спрос на дешевую энергию возрастает. Этот спрос привел к возникновению экономики, которая в значительной степени зависит от ископаемого топлива, которое создает выбросы парниковых газов, которые в настоящее время приводят к перегреву нашей планеты.

    Читайте также:
    Фото барбекю из кирпича мангалов с казаном: проект кирпичной печи своими руками, схема кладки, сколько нужно, порядовка, раскладка

    Параллельно работают постоянные разработки в области технологий и автоматизации, которые вызывают потребность в еще большей мощности.

    Все это означает, что устойчивые источники энергии важны как никогда.

    Чистая и возобновляемая солнечная энергия может помочь преодолеть разрыв в ископаемом топливе, обеспечивая при этом доступ к электричеству для всех. Фактически, прямо сейчас солнечная энергия является самой быстрорастущей формой возобновляемой энергии во всем мире.

    Но, несмотря на ценные преимущества использования солнечной энергии для удовлетворения наших потребностей в электроэнергии, это не только солнечный свет и радуга.

    Солнечная энергия, как и все формы производства энергии, имеет собственный углеродный след. Фактически, ни один возобновляемый источник энергии еще не является чистым на 100%. Когда вы учитываете, как материалы добываются, производятся, транспортируются и используются, мы внезапно обнаруживаем скрытые затраты. И это еще до того, как мы даже начали говорить об утилизации .

    Как работает солнечная энергия?

    Чтобы лучше понять, как сбор и использование солнечной энергии влияет на окружающую среду, давайте сначала вернемся к тому, как работают солнечные панели.

    Солнечные электрические панели, также известные как фотоэлектрические, отвечают за улавливание солнечной энергии и преобразование ее в полезную электроэнергию. Они состоят из небольших блоков, называемых солнечными элементами, которые сделаны из полупроводниковых материалов, обычно кремния.

    Когда солнечный свет попадает на этот материал, он заставляет частицы света или фотоны сбивать свободные электроны, тем самым создавая поток электричества.

    Хотя солнечные панели не обязательно должны быть солнечными, чтобы улавливать свет, они лучше работают в более солнечных местах.

    Для работы панелей необходимо создать электрическое поле, и это достигается за счет использования других материалов, таких как бор и фосфор, в сочетании с кремнием для создания положительных и отрицательных зарядов. Фотоэлектрические элементы состоят из монокристаллического кремния (который более эффективен и дороже) и поликристаллического кремния, который дешевле, но имеет меньшую эффективность.

    Солнечные панели состоят из следующих элементов:

    • Этиленвинилацетат или ЭВА в качестве термостойкого и влагостойкого покрытия
    • Полимерный задний лист для регулирования температуры
    • Стеклянный лист для защиты от ударов
    • Алюминиевая рама
    • Распределительная коробка как центральная система

    Для производства одного солнечного модуля требуется значительное количество энергии.

    Это верно для всех этапов солнечной энергетики, включая добычу, производство, транспортировку, вывод из эксплуатации и демонтаж.

    Полная зависимость от солнечной энергии зависит от решения двух основных проблем:

    • Неравномерное распределение солнечного света по миру
    • Несостоятельность его подачи

    Это означает, что хранение и эффективность солнечных панелей – два очень важных фактора.

    Хорошая новость заключается в том, что технологии солнечной энергии быстро развиваются – такие инновации, как новый тип солнечных элементов или новый тип материала для кремниевых солнечных элементов, могут навсегда изменить правила игры.

    Преимущества солнечной энергии

    У солнечной энергии много преимуществ, но солнечная энергия по-прежнему вызывает много вопросов относительно ее экологической ценности, как и сейчас.

    Но давайте сначала посмотрим на экологические и финансовые преимущества солнечной энергии:

    Солнечная энергия снижает выбросы углерода

    Поскольку солнечная энергия в основном полагается на солнце, основным способом положительного воздействия солнечной энергии на окружающую среду является сокращение выбросов углерода и парниковых газов. В отличие от ископаемого топлива, солнечная энергия не использует загрязняющих веществ и не нуждается в других ресурсах, кроме чистой воды.

    Солнечные панели уменьшают зависимость от национальной энергосистемы… и ваши выбросы углерода

    Использование солнечной энергии помогает значительно сократить потребление электроэнергии из национальной сети. По данным Energy Saving Trust, средний дом, использующий фотоэлектрическую (PV) систему, может сократить выбросы углерода на 1,3–1,6 тонны в год.

    Солнечная энергия устойчива

    Поскольку население мира продолжает расти, эти ресурсы скоро исчезнут. Поскольку энергия поступает от солнца, источник энергии солнечной системы безграничен, пока существует солнце.

    Это снижает нагрузку на ограниченные ресурсы, такие как уголь, нефть и природный газ, которые способствуют глобальному потеплению.

    Солнечные панели долговечны

    Хотя есть много возможностей для улучшения производственного процесса, солнечные технологии долговечны – около 30 лет при относительно низких затратах на техническое обслуживание.

    Конечно, это тоже в конечном итоге приносит пользу окружающей среде, поскольку меньше необходимости в замене и обслуживании, что может привести к большому количеству отходов.

    Читайте подробно о том, каков срок службы солнечных панелей: https://znanie-svet.ru/srok-sluzhby-solnechnykh-paneley/

    Солнечная энергия снижает загрязнение воды

    Как и любой производственный процесс, изготовление солнечных панелей требует использования воды.

    Однако общее количество воды, необходимое для солнечной энергии, по-прежнему значительно меньше, чем для других источников энергии, которым вода нужна для охлаждения.

    Солнечная энергия увеличивает стоимость недвижимости

    Каждый киловатт установленной солнечной энергии увеличивает общую стоимость перепродажи недвижимости.

    Солнечные технологии, безусловно, можно рассматривать как долгосрочное вложение для домовладельца.

    Читайте также:
    Фрезерный станок по дереву: разновидности оборудования, как правильно подобрать ручной аппарат для дома

    Может использоваться на малоиспользуемых землях

    Солнечные панели могут быть размещены практически где угодно, а это означает, что земля или жилые районы могут использоваться для солнечных панелей, не нарушая слишком сильно жизнь в дикой природе.

    Солнечная энергия обеспечивает доступную электроэнергию для пользователей вне сети

    Солнечная энергия делает электроэнергию доступной для пользователей, которые живут в отдаленных районах и не всегда могут иметь к ней доступ, если у них есть доступ к солнечному свету.

    Недостатки солнечной энергии

    Несмотря на способность солнечных электростанций вырабатывать электроэнергию, нагревать и опреснять воду, стоимость и эффективность по-прежнему являются ключевыми препятствиями, мешающими ее распространению во всем мире.

    В то время как системы солнечных панелей в конечном итоге окупают свои затраты, срок службы технологии, как правило, в значительной степени игнорируется. По сути, солнечные панели должны пройти правильный процесс переработки, но часто этого не происходит.

    При рассмотрении энергии, необходимой для добычи, производства и утилизации, возникает много вопросов о том, действительно ли солнечная энергия чиста.

    Аккумуляторы для солнечных панелей

    Наряду с этими недостатками солнечной энергии существует также проблема аккумуляторов.

    Аккумуляторы высокой эффективности необходимы, чтобы позволить странам с низким временем солнечного света хранить солнечную энергию, которую они собирали, на потом.

    Батареи содержат ряд химикатов – литий, цинк (анод), марганец (катод) и калий – которые необходимо добыть.

    Именно здесь влияние солнечной энергии на окружающую среду начинает становиться неясным.

    Хотя мы еще далеки от того, чтобы полностью использовать экологически чистые источники энергии, мы, безусловно, добились значительного прогресса за последнее десятилетие, особенно после Парижского соглашения 2016 года.

    Но мы должны действовать осторожно. Важно взвесить преимущества солнечной энергии, признавая при этом потенциальные недостатки солнечной энергии и ее влияние на окружающую среду.

    Утилизация солнечных панелей

    Если солнечные панели повреждены, возможно, их потребуется заменить. Так что же происходит с солнечной панелью, которую выводят из эксплуатации?

    Утилизация и переработка солнечных панелей вызывает беспокойство, поскольку может представлять серьезную опасность для окружающей среды. Этот вопрос особенно важен, поскольку отрасль солнечной энергетики продолжает расти.

    По данным Международного агентства по возобновляемым источникам энергии (IRENA), количество отходов солнечных панелей может достигнуть 78 миллионов тонн к 2050 году, и в мире может ежегодно образовываться 6 миллионов тонн новых солнечных отходов.

    Утилизация и переработка солнечных панелей еще не полностью изучены и остаются сложным процессом.

    Для восстановления материалов, используемых в производстве солнечных панелей, таких как кремний и серебро, требуются более сложные решения. В противном случае эти модули могут оказаться на свалках.

    После того, как эти модули отправляются на свалки, ценные материалы выбрасываются.

    Обычные свалки также не оборудованы на случай выщелачивания. Выщелачивание, при котором опасные материалы попадают в почву, является важным риском, который следует учитывать в случае повреждения или утилизации солнечных панелей.

    Как сделать солнечные панели устойчивыми?

    Чтобы переработка солнечных панелей была успешной, материалы, из которых они были изготовлены, должны оставаться пригодными для использования в конце их срока службы, десятилетия спустя.

    Хотя с такими материалами, как металл и проводка, может быть проще, кремнию нужны специальные решения, которые могут потребовать его расплавления.

    Стекло также иногда содержит примеси, такие как кадмий, сурьма и свинец.

    Разделение материалов и возможность их уникальной переработки представляет собой обременительный и потенциально дорогостоящий процесс – еще одна проблема, с которой отрасль солнечной энергетики должна столкнуться как можно скорее.

    Солнечная энергия – это хорошо или плохо?

    В конечном итоге солнечная энергия полезна для окружающей среды. По мере того, как появляется все больше политик и становится доступно больше решений по переработке, мир, полностью работающий на солнечной энергии, не так уж далек от реальности.

    Некоторые организации, такие как Recycle Solar в Великобритании и Veolia в США, начали выступать в роли специалистов по переработке солнечных панелей, стремясь сделать этот процесс комплексным и широко распространенным.

    Производство, утилизация и переработка остаются сложными областями, прежде чем солнечные энергетические системы смогут быть полностью адаптированы. Поскольку технологии стремительно развиваются, есть надежда на то, что этот возобновляемый источник преодолеет эти проблемы.

    Если вы заинтересованы в установке солнечных панелей в своем доме, знайте, что вы значительно сократите свой углеродный след.

    Мы часто обнаруживаем, что помимо установки солнечных панелей, разумное их сочетание с такими технологиями, как воздушное тепло, может значительно повысить эффективность дома при одновременном снижении счетов за электроэнергию на целых 64%.

    Солнечная энергия: преимущества и недостатки

    Опубликовано 07.07.2021 · Обновлено 07.07.2021

    Основным преимуществом технологии солнечной энергии является то, что она является устойчивой альтернативой ископаемым видам топлива. К недостаткам можно отнести то, что это дороже, чем другие чистые источники энергии.

    Солнечная энергия: обзор

    В связи с растущей угрозой изменения климата из-за чрезмерного выброса углерода многие страны ищут альтернативы чистой энергии, чтобы заменить традиционные ископаемые виды топлива.

    Читайте также:
    Что характерно для минимализма в интерьере?

    Из всех альтернатив экологически чистой энергии солнечная энергия, возможно, была самой дорогой, хотя цены на нее снижаются.Однако после рассмотрения плюсов и минусов наряду с ожиданиемпродолжения снижения цен будущее солнечной энергии выглядит довольно радужным.

    Плюсы солнечной энергии заключаются в том, что она является устойчивой альтернативой ископаемому топливу и оказывает незначительное воздействие на окружающую среду и имеет потенциал для ее производства в любой стране. Минусы в том, что он производит энергию только тогда, когда светит солнце, требует значительного количества земли и что для некоторых солнечных технологий требуются редкие материалы.

    Краткий обзор

    Технология солнечной энергии становится все более конкурентоспособной по стоимости альтернативой ископаемому топливу, хотя на некоторых рынках остается довольно дорогой.

    Преимущества солнечной энергии

    Стабильный

    Преимущество солнечной энергии заключается в том, что это устойчивая альтернатива ископаемому топливу. Хотя у ископаемого топлива есть срок годности, который может быстро приближаться, солнце, вероятно, будет существовать по крайней мере несколько миллиардов лет.

    Низкое воздействие на окружающую среду

    Солнечная энергия оказывает значительно меньшее воздействие на окружающую среду по сравнению с ископаемым топливом.Его выбросы парниковых газов несущественны, поскольку технология не требует сжигания топлива.Кроме того, хотя концентрирующие солнечные тепловые электростанции (CSP) сравнительно неэффективны в использовании воды в зависимости от типа используемой технологии, правильная технология значительно увеличивает эффективность, в то время как фотоэлектрические (PV) солнечные элементы не требуют воды при производстве электроэнергии.

    Энергетическая независимость

    Поскольку солнце светит по всему миру, оно делает каждую страну потенциальным производителем энергии, что обеспечивает большую энергетическую независимость и безопасность. Солнечная энергия не только обещает обеспечить безопасность и независимость на национальном уровне; солнечные панели могут быть установлены в отдельных домах, обеспечивая электроэнергию, которая не зависит от подключения к более крупной электросети.

    173 000

    Приблизительное количество тераватт солнечной энергии, излучаемой на Землю каждый день, – в 10 000 раз больше, чем ежедневное потребление энергии в мире.

    Недостатки солнечной энергии

    Прерывистость

    Одна из самых больших проблем, связанных с технологиями использования солнечной энергии, заключается в том, что энергия вырабатывается только тогда, когда светит солнце. Это означает, что в ночное время и в пасмурные дни может прерываться подача электроэнергии. Дефицит, вызванный этим прерыванием, не был бы проблемой, если бы существовали недорогие способы хранения энергии, поскольку чрезвычайно солнечные периоды могут фактически генерировать избыточную мощность. Фактически, Германия – один из лидеров в области технологий солнечной энергии – сейчас сосредоточивает внимание на разработке адекватных накопителей энергии для решения этой проблемы.

    Землепользование

    Другая проблема заключается в том, что солнечная энергия может занять значительную часть земли и вызвать деградацию земель или потерю среды обитания для диких животных.В то время как солнечные фотоэлектрические системы могут быть прикреплены к уже существующим структурам, для более крупных фотоэлектрических систем может потребоваться от 3,5 до 10 акров на мегаватт, а для объектов CSP требуется от 4 до 16,5 акров на мегаватт.4 Тем не менее, воздействие можно уменьшить, разместив объекты в некачественных зонах или вдоль существующих транспортных и транспортных коридоров.

    Дефицит материалов

    Для производства некоторых солнечных технологий требуются редкие материалы. Однако это в первую очередь проблема фотоэлектрической технологии, а не технологии CSP. Кроме того, это не столько отсутствие известных запасов, сколько неспособность текущего производства удовлетворить будущий спрос: многие из редких материалов являются побочными продуктами других процессов, а не целью целенаправленных усилий по добыче полезных ископаемых. Переработка фотоэлектрических материалов и достижения в области нанотехнологий, которые увеличивают эффективность солнечных элементов, могут помочь увеличить предложение, но, возможно, поиск заменителей материалов, которые существуют в большем изобилии, может сыграть свою роль.

    Оборотная сторона окружающей среды

    Единственный экологический недостаток солнечной технологии заключается в том, что она содержит многие из тех же опасных материалов, что и электроника. Поскольку солнечная энергия становится все более популярной, проблема утилизации опасных отходов становится дополнительной проблемой. Однако при условии, что проблема надлежащей утилизации решена, сокращение выбросов парниковых газов, которое предлагает солнечная энергия, делает ее привлекательной альтернативой ископаемым видам топлива.

    Плюсы и минусы солнечной энергии

    Как снабжать человечество электроэнергией без вреда для окружающей среды – главный вопрос, которым не так давно задавались современные исследователи. Мы уже научились добывать энергию с помощью сооружения волновых, приливных, геотермальных, ветряных и солнечных электростанций. Прогресс технологий подарил нам уникальную возможность использовать Солнце с помощью установленной системы либо же портативных батарей в индивидуальных целях. В этой статье мы рассмотрим плюсы и минусы солнечной энергии, а также коротко расскажем о том, что собой представляют гелиопанели и где их используют.

    Читайте также:
    Технология покраски деревянных дверей. Выбор краски, видеоинструкция

    Устройство солнечных батарей

    Возможность использования солнечной энергии подарила нам такая наука, как гелиоэнергетика. Именно она исследует и разрабатывает устройства, которые занимаются преобразованием излучения Солнца в электрическую и тепловую энергию.

    К таким устройствам относится солнечная батарея. Это плоская, с защитным покрытием конструкция из фотоэлементов, являющихся полупроводниками. Они обеспечивают процесс преобразования солнечной энергии в электрическую. Благодаря разнообразию размеров, их применяют в различных сферах жизнедеятельности.

    Например, для обеспечения электричеством частного дома потребуется установка, которая включает следующие составляющие:

    • аккумуляторы;
    • контроллер;
    • инвертор.

    С помощью инвертора постоянный ток, который создается в ясный день, проходит процесс преобразования в переменный, а далее распределяется на потребителей электричества. Нерасходуемое электричество накапливается в аккумуляторах и используется ночью или в непогоду. Контроллер следит за зарядом аккумуляторов.

    Рассмотрим подробно плюсы и минусы солнечных батарей.

    Преимущества

    Использование солнечных батарей имеет следующие преимущества:

    • доступность источника энергии;
    • постоянное и независимое энергоснабжение;
    • бесплатное потребление;
    • экологичность;
    • бесшумность;
    • высокая износостойкость.

    Каждое из этих достоинств мы опишем более подробно.

    Доступность источника энергии

    Солнце освещает практически каждый участок поверхности Земли. Поэтому человек может воспользоваться преимуществами использования солнечной энергии. Также следует отметить, что потенциал этого типа энергии в рамках всемирного масштаба многократно превышает потребность в ней.

    Постоянное и независимое энергоснабжение

    В отличие от полезных ископаемых, энергия Солнца неисчерпаемая и всеобъемлющая. Конечно, как и все на нашей планете имеет свой конец, так и Солнце может иссякнуть. Но когда это произойдет – никто наверняка не знает. Помимо этого, ни солнечная панель, ни сам источник не требует каких-либо затрат на содержание. Этот факт делает вас абсолютно независимым от цен и транспортировки электроснабжения.

    Бесплатное потребление

    Как мы уже упоминали, Солнце – источник бесплатной энергетики. Некоторые затраты потребуются лишь на установку системы, которая обеспечит вас электричеством. Но в данном случае их можно отнести к долгосрочным инвестициям.

    Экологичность

    Глобальное потепление – серьезная проблема. Использование солнечных батарей помогает снизить расход природных ресурсов, а их производство и принцип работы не сопровождаются выбросом вредных веществ в атмосферу. Поэтому они являются абсолютно экологичными.

    При установке системы, перерабатывающей солнечную энергию в электричество, вы можете быть уверенны в ее безопасности для окружающей среды и своих родных и близких.

    Бесшумность

    Генерация электроэнергии происходит совершенно бесшумно по причине отсутствия движущихся деталей в конструкции солнечных панелей. Устанавливая систему на крыше своего дома, можно не беспокоиться о постоянном гуле, который, например, издают электрические столбы.

    Высокая износостойкость

    Срок службы такой системы электроснабжения составляет около 25 лет. С течением времени КПД панелей начинает снижаться. В виду простоты конструкции, ее всегда можно заменить на новую.

    Недостатки использования солнечных батарей

    Солнечная энергия, а именно ее использование, предусматривает также и минусы, не смотря на вышеописанные плюсы.

    К недостаткам относят следующие факторы:

    • высокая цена;
    • низкий КПД;
    • большая площадь, занимаемая системой;
    • зависимость работы от погодных условий.

    Стоимость монтажа системы, которая сможет удовлетворить индивидуальные потребности человека, непомерно высока. Не говоря уже о том, чтобы снабдить электроэнергией целый дом. Это объясняется следующим пунктом.

    Низкий КПД

    Продуктивность солнечных батарей намного ниже, по сравнению с традиционными источниками электроэнергии. Например, панель средней работоспособности, площадью в 1 м 2 производит мощность около 120 Вт. Этого должно хватить только для зарядки планшета или телефона. Из этого вытекает следующий пункт.

    Большая площадь, занимаемая системой

    Чтобы обеспечить ваши минимальные потребности в электроэнергии, вам понадобится очень большая площадь. Если, конечно же, речь не идет о зарядке телефонов, планшетов или работы приборов с потреблением низкой мощности.

    Зависимость работы от погодных условий

    КПД солнечных батарей снижается в пасмурный, облачный день, зимой, при низких температурах и т.д. Ночью, в отсутствие Солнца, источника энергии, производство электричества прекращается. На работу панелей также влияет расположение вашего дома и окон.

    Использование солнечной энергии

    Помимо удовлетворения индивидуальных запросов потребителей электричества, солнечную энергию используют в различных сферах жизнедеятельности:

    1. Авиация. Благодаря солнечной энергии, самолеты могут не расходовать топливо на протяжении некоторого времени.
    2. Автомобилестроение. Панели могут использоваться для зарядки электромобилей.
    3. Медицина. Благодаря разработкам южнокорейских ученых, мир увидел солнечную батарею, которую используют для приборов, поддерживающих функциональность организма человека, путем вживления под кожу.
    4. Космонавтика. Гелиопанели устанавливаются, например, на спутниках и космических телескопах.

    Это всего лишь несколько примеров. Кроме этого, солнечные панели широко используют для обеспечения электроэнергией зданий, а также целых населенных пунктов.

    Надеемся, что вышеописанные преимущества и недостатки использования солнечных батарей помогут вам определиться с решением, стоит ли вам обратиться к альтернативным источникам энергии.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: