Теплообменник для отопления: устройство, виды, производители, плюсы и минусы

Принцип работы теплообменника в системе отопления

Теплообменник для отопления представляет собой техническое устройство, передающее тепло между горячей и холодной средой. Приборы этого типа, применяемые для отопительных систем, делятся на несколько категорий в зависимости от принципа работы, взаимодействия сред, способа передачи тепла, а также направления движения носителя и потребителя тепла. При выборе теплообменного аппарата для дома или бани учитывают особенности конкретной системы отопления, плюсы и минусы прибора, его конструкцию и дополнительный функционал.

  1. Устройство и принцип работы теплообменника
  2. Виды по принципу работы
  3. Смесительные
  4. Поверхностные
  5. Кожухотрубные
  6. Погружные
  7. Спиральные
  8. Пластинчатые
  9. Достоинства и недостатки
  10. Правила выбора
  11. Эксплуатация и уход
  12. Популярные производители

Устройство и принцип работы теплообменника

Принцип движения теплоносителя в теплообменнике пластинчатого типа

Конструкция теплообменного прибора напрямую зависит от его типа. Современные приборы для обогрева состоят из двух прижимных плит с отверстиями, к которым подключаются дополнительные элементы трубопровода. Носитель и потребитель тепла также поступают внутрь прибора благодаря наличию отверстий. Принцип работы теплообменника достаточно простой, его можно рассмотреть на примере пластинчатого агрегата. Поток тепла в таком приборе влияет на гофрированный слой в нем, постепенно набирающий скорость в процессе работы.

После запуска первого этапа среды начинают перемещаться навстречу друг другу с обеих сторон во избежание смешивания. На пластинах, расположенных параллельно, формируются рабочие каналы, во время перемещения по ним в каждой среде происходит тепловой обмен, в результате чего тепло выходит за пределы агрегата. В домашних или банных пластинчатых агрегатах внутренние потоки могут идти по схеме одноходового или многоходового типа с учетом технических характеристик и конкретных условий.

Перед выбором прибора полезно почитать информацию о том, для чего нужен теплообменник, узнать о типах агрегата, правилах его монтажа и эксплуатации.

Виды по принципу работы

Принцип работы и устройство смесительного теплообменника

По способу взаимодействия сред тепловые обменники могут быть поверхностными и смесительными. Схема подключения смесительного теплообменника считается более сложной.

Смесительные

В основе работы смесительных агрегатов лежит контакт двух веществ и смешивание потребителя и носителя тепла. Смесительный теплообменник для отопления делится на несколько категорий, сюда входят градирни с дымоходом, паровые барботеры, а также конденсаторы барометрического типа и сопловые подогреватели.

Поверхностные

Схема работы поверхностного теплообменника

Поверхностный теплообменник работает в котельной за счет передачи тепла сквозь контактную поверхность. Это могут быть пластины или труба в зависимости от типа прибора. Среды внутри таких агрегатов не смешиваются между собой, в чем заключается их главное отличие от смесительных аналогов.

По принципу передачи тепла поверхностные тепловые обменники делятся на два типа: регенеративные и рекуперативные.

  • Принцип действия рекуперативного теплообменника основан на непрерывной передаче тепла сквозь контактную поверхность. Таким образом работают многие приборы пластинчатого типа.
  • Стандартный или вторичный регенеративный агрегат предназначен для охлаждения и нагревания воздуха. В этих устройствах движение носителя и потребителя тепла происходит в периодическом режиме. Такие установки часто применяются в офисных многоэтажных зданиях.

Рекуперативные приборы делятся на две категории в зависимости от поверхности. Она может быть изготовлена из труб, такой вариант предназначен для работы в условиях высоких перепадов давления. Приборы с листовой поверхностью более компактны и имеют небольшой вес, поэтому монтаж теплообменника этого типа почти не доставляет проблем.

Кожухотрубные

Кожухотрубной прибор изготовлен из ребристых труб, увеличивающих площадь поверхности, которая передает тепло. Он может иметь конструкцию, включающую трубные решетки, с жесткой сцепкой всех деталей и элементов. Решетки в таком устройстве привариваются к стенкам корпуса, на сцепке к нему прикрепляются трубы. Конструкция с плавающей головкой считается более совершенной, аппараты этого типа стоят дороже, но считаются более практичными.

Погружные

Приборы такого типа часто устанавливают в многоэтажках. В них установлен змеевик в форме цилиндра, размещенный в сосуде с жидкостью. За счет простой конструкции время на отдачу тепла заметно сокращается.

Спиральные

Обвязка такого теплообменника состоит из металлических листов, скрученных в спираль и закрепленных на крене. Агрегатам этого типа нужна хорошая герметизация. Также нужно учесть, что установка спирального теплообменника требует специальных навыков. Спиральные приборы не используют в системах с давлением более 10 кгс/см2.

Пластинчатые

Пластинчатые приборы заслуженно считаются наиболее совершенными и идеально подходят как для частных домов, так и для производственных помещений. Они не доставляют проблем во время сборки и чистки, имеют минимальную степень сопротивления гидравлике. Схема подачи рабочей среды в них может осуществляться тремя способами: прямоточным, смешанным и противоточным.

Читайте также:
Схема распределительного щита 380 В и 220 В с подключением генератора

Для чего нужен теплообменник в системе отопления

Как видно из названия, теплообменник – это устройство для обмена теплом. Среды или поверхности с разными температурами взаимодействуют, изменяя температуру друг друга.

Теплообменники используют в вентиляции, охлаждении, кондиционировании, но велика их роль и в отоплении. Их устанавливают на различных производствах, в коммунальном хозяйстве и для персонального использования.

Важно позаботиться о наличии такого устройства, например, в частном доме с независимой системой отопления. С его помощью можно будет регулировать температуру воздуха в помещении, контролировать забор тепла от основного источника и т.д.

Теплообменники для систем отопления

В системах отопления эти устройства не так популярны в нашей стране, как в других, там, где каждый пользователь может забирать столько тепла от общего источника, сколько ему требуется. ТО играют ключевую роль в отоплении дома или дачи, а также везде, где есть необходимость регулировать температуру. Установка такого устройства в котельной позволяет автоматизировать работу всей системы и сэкономить.

В качестве носителя тепла чаще всего выступает вода, но может быть и антифриз, масло и т.д.

По сути, ТО — это разделитель между основным источником тепла (поставщиком) и системой конечного пользователя. Система отопления, в которой присутствует ТО, называется независимой. В котельных обменники устанавливаются для погодного регулирования, а также он снижает износ современных труб. Дело в том, что их сейчас делают из пластика, и максимальная температура, которую они могут выдерживать – 90 градусов.

Если теплообменника в системе нет, то от центра (котла) горячая вода передается непосредственно потребителю – в батареи. Но котельная не регулирует подачу тепла, и она не меняется в зависимости от выбора потребителей или погодных условий.

Если в ИТП жилого дома установить теплообменники, то это позволяет существенно экономить. Каждый жилец регулирует температуру по потребностям с помощью кранов на радиаторах в квартирах. Тепло можно увеличивать при сильных морозах и уменьшать при потеплении.

Иногда такие устройства устанавливают и в самой котельной. Такая двойная система, что тоже помогает сэкономить: во внутреннем контуре меньше теплоносителя, а значит, в котлах почти не образуется накипь, они могут служить гораздо дольше.

Теплообменник в домашнем отоплении

В системе отопления дома или дачи теплообменник играет ключевую роль.

Если вы устанавливаете у себя такое устройство, то потом можно развернуть целую систему регулирования: для контроля температуры в разных комнатах, работы теплых полов и т.д. К теплообменнику проводят трубу с горячим носителем от котельной, а с другой стороны – внутреннюю систему с реле, контроллерами и т.д. Вы получаете не только контроль над температурой воздуха в помещении, использование этого устройства помогает прогревать дом более равномерно, стабилизирует давление в трубах, экономит энергию и продлевает срок службы труб.

Кроме того, он сам по себе может служить источником для получения горячей воды: в один контур приходит горячий носитель, а к другому подводится водопровод. Это тоже способ сэкономить: на бойлерах и электроэнергии.

Подключить теплые полы, обогрев ступеней и т.д. тоже не получится без теплообменника. Теплые полы забирают на себя большое количество горячей воды, оставляя соседние помещения в холоде. Кроме того, оптимальной температура носителя тепла для такого пола не должна быть выше 45 градусов.

Виды теплообменников

Все устройства делятся на две большие группы. В первых среды смешиваются друг с другом, во втором случае – они разделены стенкой. Их используют чаще и называют поверхностными. В свою очередь, такие теплообменники делятся тоже на два типа.

  1. Рекуператоры. В них тепло передается через стенку, от разных носителей, которые независимо друг от друга движется по разным каналам.
  2. Регенераторы. Два потока контактируют с одной и той же поверхностью. Например, горячий поток нагревает ее, а затем холодный забирает тепло.

Самые распространенные ТО первого типа – рекуперативные. К ним относятся

  • Кожухотрубчатые: внутри кожуха находятся трубы, внутри которых течет одна среда (горячая), а другая (холодная) движется между ними.
  • Погружные: представляют из себя бак, заполненный жидкостью, внутри которого находится змеевик со второй средой.
  • Спиральные: несколько спиралей привариваются к одной перегородке. Используются для работы с вязкими средами.
  • Пластинчатые разборные: самый распространенный вид. Это особым образом перфорированные (для увеличения поверхности) пластины, собранные вместе, а между ними движутся различные среды.
  • «Труба в трубе»: одна труба вставляется в другую, между ними проходит теплообмен. Может состоять из нескольких звеньев. Выдерживают высокое давление, расход воды в системе небольшой.
  • Оросительный: собраны несколько труб, по их поверхности течет охлаждающая жидкость. Часто используются в качестве конденсаторов.
Читайте также:
Утепление пола ППУ своими руками

Подберем теплообменник для отопления со скидкой до 70 %

Пластинчатый теплообменник: устройство

В основном, в независимых системах отопления применяются пластинчатые теплообменники. По сути это набор пластин, которые перфорируют для увеличения полезной площади и собирают между двумя плитами. Одна из этих плит обычно не фиксируется, ее можно снимать и увеличивать или уменьшать количество пластин. Бывают с спаянные варианты, их уже не получится разобрать.

Между пластинами движутся горячая и холодная жидкости, попеременно. Конструкция герметична благодаря уплотнителям.

Пластины – это основа конструкции. Их изготавливают из стали, меди, графита, титана и других сплавов, толщиной от 0,4 до 1 мм., в зависимости от давления. Выбор материала обусловлен условиями использования, а также выбором среды, которой будет заполнено устройство. Чаще всего это вода, но бывают случаи, например, на специализированных производствах, где используют агрессивные жидкости.

Пластины плотно прижаты друг к другу и образуют каналы благодаря специальной штамповке. На одной стороне каждой пластины есть пазы, куда вставляются резиновые прокладки для герметичности. Устанавливают их одну за одной, в поворот 180 градусов.

В пластинах по 4 отверстия. Два из них служат для провода и отвода горячей и нагреваемой жидкости. Два другие предотвращают смешение жидкостей за счет дополнительной изоляции. Если произойдет прорыв одного из контуров, то дренажные пазы также препятствуют смешиванию.

Благодаря тому, что греющая и нагреваемая среды направлены в противоток друг другу, и извилистому течению (по каналам) эффективность обмена теплом увеличивается, а гидравлическое сопротивление относительно небольшое.

Система самоочищается за счет турбулентных потоков, но на пластинах может откладываться накипь, осадки веществ, находящихся в воде, потому их нужно периодически промывать специальными растворами. Можно понять, что пришло время для очистки по снижения работоспособности прибора, перепадах давления и т.д.

При сборке сначала закрепляются направляющие на штативе и неподвижной плите. На них нанизываются пластины, и подвижная плита стягивается с неподвижной болтами.

Существует 2 варианта компоновки пластин.

Одноходовая. Теплоноситель разделяется на потоки, которые текут параллельно друг другу по пластинам, потом сливается и выходит в порт для вывода.

Многоходовая. Здесь устройство чуть сложнее. Благодаря перегородкам в разделительных пластинах теплоноситель течет по каналам, как бы разворачиваясь в пластине.

Плюсы и минусы пластинчатых теплообменников

Пластинчатые ТО обладают хорошими характеристиками теплопередачи при компактных размерах. Еще один плюс таких устройств в том, что их можно изготовить индивидуально под конкретные задачи.

К плюсам однозначно можно отнести:

  • Вариативность размеров теплообменника и материалов, из которых его изготавливают.
  • Возможность изменять количество пластин и таким образом изменять мощность устройства (если речь не идет о запаянном ТО).
  • Высокий процент теплопередачи.
  • Низкие теплопотери.
  • Простота использования: устройство легко разобрать, промыть, собрать.
  • Легко ремонтировать: пластины, в случае необходимости, можно просто заменить.

Но есть у пластинчатых теплообменников и минусы:

  • Давление в пластинах не должно превышать 25 кг/кв.см.
  • Температура не выше 200 градусов.
  • Если теплоноситель содержит большое количество примесей, на пластинах будет быстро образовываться накипь.

Некоторые изменения в конструкции повышают прочность и КПД пластинчатых теплообменников. Есть такие разновидности, как пластинчато-ребристый и оребренно-пластинчатый. В первом варианте между разделительными пластинами проложены ребристые насадки. Подходят для теплообмена с неагрессивными жидкостями и газом. Оребренно-пластинчатые актуальны при газовом отоплении.

Как правильно выбрать теплообменник

Есть огромное количество теплообменников и нужно знать, как правильно их выбрать. Лучше всего, если такой прибор изготовят под конкретные задачи профессионалы. Он будет рассчитан на определенную нагрузку, материалы будут подходить для теплоносителя и срок службы прибора будет значительно больше, чем при выборе наугад. Что нужно знать для выбора теплообменника:

  • температура в контуре теплосети;
  • тепловая нагрузка;
  • температура во внутреннем контуре;
  • рабочее давление;
  • допустимые потери напора;
  • загрязненность рабочей среды;
  • характеристики теплоносителя и т.д.

Подробнее об этом можно узнать на странице
Рассчитать теплообменник
где вы можете указать нужные вам характеристики и получить предложение по ПТО от наших менеджеров.

Теплообменники необходимы для систем отопления как юридическим организациям (поставщикам услуг, управляющим компаниям и т.д.), так и частным лицам – для установки теплого пола или подогрева ступенек в доме, контроля расходов на отопление, экономии на энергии. Современные ТО просты и безопасны в использовании.

Читайте также:
Электротяпка + видео: описание и характеристика, фото

Взгляните на представленные теплообменники для отопления

Сантехник .

Телефон Сантехника 8 (495) 235-25-21, 8 (963) 626-40-67

понедельник, 11 октября 2021 г.

Теплообменник в системе отопления — назначение, виды, преимущества и недостатки

Теплообменник для отопления дачного дома или коттеджа, в которых присутствует котел и автономная система водяного обогрева , стремительно набирает популярность и становится неотъемлимым атрибутом комфорта. В статье мастер сантехник расскажет, что такое теплообменник в системе отопления.

В системах отопления эти устройства не так популярны в нашей стране, как в других, там, где каждый пользователь может забирать столько тепла от общего источника, сколько ему требуется. Теплообменник играют ключевую роль в отоплении дома или дачи, а также везде, где есть необходимость регулировать температуру. Установка такого устройства в котельной позволяет автоматизировать работу всей системы и сэкономить.

В отопительном контуре в качестве теплоносителя может использоваться не только вода (хотя чаще всего все-таки умягченная с помощью комплексонов и омагниченная вода), это может быть антифриз , масло или другая жидкость, но даже если вода ни кто и не подумает брать воду прямо из системы отопления, эту ему обойдется очень дорого. Вот здесь и приходит на выручку теплообменник, который устанавливается в систему отопления и разделяет ее на две части, систему отопления от поставщика к потребителю и систему отопления самого потребителя.

Система отопления, в которой присутствует теплообменник, называется независимой. В котельных обменники устанавливаются для погодного регулирования , а также он снижает износ современных труб. Дело в том, что их сейчас делают из пластика, и максимальная температура, которую они могут выдерживать – 90 °C, при этом максимальный срок службы пластиковых труб , при такой температуре, составляет не более 5 месяцев. Как видите не много, хорошо, что и сильные морозы у нас так долго не держатся.

Если теплообменника в системе нет, то от центра ( котла ) горячая вода передается непосредственно потребителю – в радиаторы . Но котельная не регулирует подачу тепла, и она не меняется в зависимости от выбора потребителей или погодных условий.

Если установить теплообменники, то это позволяет существенно экономить. Каждый жилец регулирует температуру по потребностям с помощью кранов на радиаторах в квартирах . Тепло можно увеличивать при сильных морозах и уменьшать при потеплении.

Теплообменник в домашнем отоплении

В системе отопления дома или дачи теплообменник играет ключевую роль. Если вы устанавливаете у себя такое устройство, то потом можно развернуть целую систему регулирования: для контроля температуры в разных комнатах, работы теплых полов и т.д.

Подключить теплые полы, обогрев ступеней и т.д. тоже не получится без теплообменника. Теплые полы забирают на себя большое количество горячей воды, оставляя соседние помещения в холоде. Кроме того, оптимальной температура носителя тепла для такого пола не должна быть выше 45 °C .

К теплообменнику проводят трубу с горячим носителем от котельной, а с другой стороны – внутреннюю систему с реле, контроллерами и т.д. Вы получаете не только контроль над температурой в помещении, использование этого устройства помогает прогревать дом более равномерно, стабилизирует давление в трубах , экономит энергию и продлевает срок службы труб. Такая двойная система, что тоже помогает сэкономить, во внутреннем контуре меньше теплоносителя, а значит, в котлах почти не образуется накипь , они могут служить гораздо дольше.

Кроме того, он сам по себе может служить источником для получения горячей воды: в один контур приходит горячий носитель, а к другому подводится водопровод. Это тоже способ сэкономить: на бойлерах и электроэнергии .

По принципу работы их можно поделить на два типа:

  • Смесительные т еплообменники — в них две жидкости разной температуры смешиваются друг с другом.
  • Поверхностные т еплообменники — в них горячая и холодная среда не смешиваются напрямую, а теплообмен происходит через стенку.

Поверхностные агрегаты делятся еще на два типа:

  • Рекуперативные устроены так, что теплоносители в нем движутся по разным каналам, а обмен теплом происходит через стенку. И в каждой точке этой стенки направление теплового потока остается неизменным.
  • Регенеративные устроены так, что тепло передается от одной и той же поверхности нагрева, с которой попеременно контактируют два потока, меняющих свое направление.
Читайте также:
Установка радиаторов: назначение и устройство, разновидности и материалы, обвязка и монтаж

Рекуперативный тип — самый распространенный. К нему относятся следующие виды т еплообменников :

  • Кожухотрубные — состоят из кожуха, к торцу которого приварены трубные решетки с пучками труб. Решетки закрываются крышками при помощи болтового соединения. Теплоноситель в кожух поступает через штуцер, при этом одна среда течет по трубам, а другая — по пространству между ними.
  • Погружные — представляют собой бак, заполненный жидкостью, в который погружается змеевик — по нему курсирует вторая среда.
  • Спиральные — состоят из двух металлических листов, которые приварены к перегородке и свернуты в спираль. Такие агрегаты могут работать с вязкими жидкостями.
  • Пластинчатые — состоят из сжатых штампованных пластин с уплотнениями. Их рельефная поверхность образует каналы, по которым циркулируют носители тепла.

Устройство пластичтатого теплообменника

В основном, в независимых системах отопления применяются пластинчатые теплообменники. По сути это набор пластин, которые перфорируют для увеличения полезной площади и собирают между двумя плитами. Одна из этих плит обычно не фиксируется, ее можно снимать и увеличивать или уменьшать количество пластин. Бывают с спаянные варианты, их уже не получится разобрать.

Между пластинами движутся горячая и холодная жидкости, попеременно. Конструкция герметична благодаря уплотнителям.

Пластины – это основа конструкции. Их изготавливают из стали, меди, графита, титана и других сплавов, толщиной от 0,4 до 1 мм., в зависимости от давления. Выбор материала обусловлен условиями использования, а также выбором среды, которой будет заполнено устройство. Чаще всего это вода, но бывают случаи, например, на специализированных производствах, где используют агрессивные жидкости.

Пластины плотно прижаты друг к другу и образуют каналы благодаря специальной штамповке. На одной стороне каждой пластины есть пазы, куда вставляются резиновые прокладки для герметичности. Устанавливают их одну за одной, в поворот 180 градусов.

В пластинах по 4 отверстия. Два из них служат для провода и отвода горячей и нагреваемой жидкости. Два другие предотвращают смешение жидкостей за счет дополнительной изоляции. Если произойдет прорыв одного из контуров, то дренажные пазы также препятствуют смешиванию.

Благодаря тому, что греющая и нагреваемая среды направлены в противоток друг другу, и извилистому течению (по каналам) эффективность обмена теплом увеличивается, а гидравлическое сопротивление относительно небольшое.

С уществует 2 варианта компоновки пластин:

  • Одноходовая. Теплоноситель разделяется на потоки, которые текут параллельно друг другу по пластинам, потом сливается и выходит в порт для вывода.
  • Многоходовая. Здесь устройство чуть сложнее. Благодаря перегородкам в разделительных пластинах теплоноситель течет по каналам, как бы разворачиваясь в пластине.

Плюсы и минусы пластинчатых теплообменников

Пластинчатые т еплообменники обладают хорошими характеристиками теплопередачи при компактных размерах. Еще один плюс таких устройств в том, что их можно изготовить индивидуально под конкретные задачи.

К плюсам однозначно можно отнести:

  • Вариативность размеров теплообменника и материалов, из которых его изготавливают.
  • Возможность изменять количество пластин и таким образом изменять мощность устройства (если речь не идет о запаянном теплообменнике).
  • Высокий процент теплопередачи.
  • Низкие теплопотери.
  • Простота использования: устройство легко разобрать, промыть, собрать.
  • Легко ремонтировать: пластины, в случае необходимости, можно просто заменить.

Но есть у пластинчатых теплообменников и минусы:

  • Давление в пластинах не должно превышать 25 кг/кв.см.
  • Температура не выше 200 °C.
  • Если теплоноситель содержит большое количество примесей, на пластинах будет быстро образовываться накипь.

Некоторые изменения в конструкции повышают прочность и КПД пластинчатых теплообменников. Есть такие разновидности, как пластинчато-ребристый и оребренно-пластинчатый. В первом варианте между разделительными пластинами проложены ребристые насадки. Подходят для теплообмена с неагрессивными жидкостями и газом. Оребренно-пластинчатые актуальны при газовом отоплении.

Как рассчитывают теплообменники

Не существует типовых моделей теплообменных аппаратов — каждый из них собирается под конкретные условия эксплуатации. Материал, количество пластин, размеры, технические характеристики — все это определяется на основе расчетов. Расчетами занимается компания-поставщик оборудования. Все, что нужно заказчику — предоставить необходимые данные.

Для расчетов нужно знать следующие параметры:

  • Температура в контуре теплосети;
  • Температура внутреннего контура;
  • Тепловая нагрузка;
  • Рабочее давление;
  • Допускаемые потери напора.

Эти данные можно запросить у теплоснабжающей организации. Тепловую нагрузку можно легко рассчитать, если известны остальные показатели. При выборе стоит учитывать и другие параметры, такие как вязкость и загрязненность рабочей среды. Неправильные подсчеты могут серьезно повлиять на срок службы, эффективность и стоимость оборудования.

Возможные ошибки при выборе:

  • Неверно учтены основные параметры. Ошибки в подсчетах, неточности при заполнении заявки, взятые «на глазок» цифры — все это приводит к тому, что прибор чаще загрязняется и раньше выходит из строя.
  • Материалы не соответствуют теплоносителю — в слишком агрессивной или загрязненной среде они будут быстро разрушаться и засоряться.
  • Некорректный запас площади на загрязнение (он должен оставаться в диапазоне 10-50%), при слишком низком значении прибор будет быстро покрываться накипью, при слишком высоком — будет работать неэффективно.
Читайте также:
Строительный пылесос для бетонной пыли

Эксплуатация и уход за пластинчатыми теплообменниками для отопления

Температура и давление системы отопления должны соответствовать параметрам теплообменника. Резкие перепады этих показателей негативно влияют на его работу, а если они меняются плавно, то устройство прослужит максимально долго.

Благодаря рельефным каналам пластинчатые теплообменники самоочищаются за счет турбулентных завихрений потоков. Но даже такие устройства периодически нужно чистить. Если мощность прибора заметно снизилась, появились значительные перепады давления, посторонние шумы — это свидетельствует о загрязнении пластин.

Чистка теплообменника может производиться двумя методами:

  • Безразборным — с использованием специальных жидких очищающих составов.
  • Разборным — с разборкой прибора и механической чисткой щетками.

В любом случае, чистку должны проводить профессионалы.

Популярные производители теплообменников

В России особенно востребованы ТО следующих марок:

  • «Ридан» — ведущий российский производитель теплообменного оборудования, на рынке с 1998 года. Продукция этой марки славится надежностью и долговечностью.
  • Alfa Laval — шведская компания, один из лидеров отрасли. С 1992 года производит ТО на российском заводе.
  • Danfoss — еще один мировой бренд, с 1993 года присутствующий на российском рынке. Одна из особенностей этой датской марки — она выпускает много типовых аппаратов самых разных размеров.
  • Swep — мировой лидер по производству паяных пластинчатых теплообменников для промышленных нужд.

В сюжете – Принцип работы теплообменника для систем отопления

В сюжете – Максимально просто объяснена разница между бойлером ГВС и теплообменником ГВС

В сюжете – Водяной теплый пол через теплообменник

В сюжете – Монтаж автономного отопления в квартире с подключением к центральному отоплению через теплообменник

Теплообменник для системы отопления: основные виды и производители

Теплообменник – это главный элемент отопительной системы. Его основная роль заключается в передаче тепловой энергии от генератора к теплоносителю.

С учетом конструктивных элементов они могут изготовляться различных видов, благодаря чему каждый хозяин сможет выбрать подходящий вариант для своей отопительной системы.

Для чего необходим теплообменник?

В домашних системах отопления чаще всего можно встретить поверхностные теплообменники. В
них передача тепла происходит через поверхности металлических стенок этого аппарата.

  • Максимальная реализация отопления через представленный аппарат наблюдается в конструкции котлов, работающих на газе, твердом топливе и электричестве.
  • Циркуляция теплоносителя происходит по трубам, изогнутым в форме змеевика. Они расположены внутри котельного агрегата, а нагрев теплоносителя осуществляется от температуры горящего топлива.
  • Горячая вода направляется в трубопровод системы отопления, а заменяет ее в теплообменнике остывший носитель тепла из радиаторов.

Решили самостоятельно смонтировать водопровод из полипропилена? Наша статья — Сварка полипропиленовых труб: инструкция, поможет быстро во всем разобрать и выбрать необходимый инструмент.

О том, как работать с металлопластиковыми трубами, вы узнаете здесь

Даже сегодня во многих домах присутствует традиционный источник тепловой энергии – печь. Ее целесообразно использовать для дома небольшой площади. Если речь идет о многокомнатном коттедже, то ее тепловой мощности будет недостаточно.
По этой причине в частных домах отопительная система не может нормально функционировать без этого элемента. Именно благодаря ему удается превратить печь в полноценный водонагревательный котел.

Виды теплообменников

Теплообменные агрегаты могут быть различных типов. Их отличие заключается в способе передачи тепловой энергии. Выделяют следующие виды представленных аппаратов:

  1. Смесительные. В них передача тепловой энергии осуществляется благодаря смешению двух рабочих сред. По конструкции эти устройства намного проще, чем поверхностные. Использовать такие агрегаты получается только при условии возможности смешивания носителей тепла. Это условие и служит главным недостатком смесительных приборов.
  2. Поверхностные. В них осуществляется обмен энергией между рабочими
    носителями тепла посредством стенок разделителя
    .
    Такие устройства подразделяются на рекуперативные и регенеративные.
    В рекуперативных при передаче тепловой энергии через разделительную стенку поток тепла движется в одном направлении в каждой точке стенки.
    Для регенеративного теплообменного аппарата свойственно то, что носитель тепла при попеременном касании одной и той же поверхности, время от времени изменяет направление потока.
Читайте также:
Чехлы на мебель: для мягкой пошив, выкройки своими руками, как сшить на боковины дивана, шитье и фото

Типы рекуперативных теплообменников

Большим спросом на сегодня пользуются рекуперативные теплообменные устройства. Соглас
но конструкционному исполнению выделяют следующие виды представленных агрегатов:

Кожухотрубный

Это устройство, представляющее собой пучки труб, приваренные к кожуху и прикрепленные к трубным решеткам при помощи болтов.
Движение первого носителя тепла в межтрубном пространстве осуществляется через присутствующие на корпусе штуцера. Другой теплоноситель течет по трубам. На корпусе или крышке представленных устройств присутствуют перегородки.
В целях повышения отдачи тепла трубы подвергают процессу оребрения методом накатки или навивки ленты.

Погруженный

Его конструкция предполагает погружение одного теплоносителя в емкость с другим. Такие устройства характеризуются дешевизной и простотой.

Теплообменные устройства типа «труба в трубе»

Состоит из нескольких звеньев, расположенных друг над другом и соединенных между собой. Каждое звено представляет собой конструкцию из вставленных друг в друга труб, между которыми и происходит теплообмен.
Их целесообразно эксплуатировать при высоких показателях давления и небольших расходах воды в системе.

Выбираете алюминиевые радиаторы для дома? Узнайте подробнее о технических характеристиках алюминиевых радиаторов отопления.

Как выбрать тепловой насос вы можете узнать тут

Оросительный

Состоит из нескольких рядов труб, расположенных одна над другой, по наружной поверхности которых тонкой пленкой стекает охлаждающая их вода

Его активно применяют в холодильных установках, так как они выступают в роли конденсаторов.

Графитовый

Конструкция теплообменного устройства предполагает наличие блоков из графита, уплотненных между собой при помощи прокладок из резины и
зафиксированных крышками
.
Графит считается прекрасным проводником тепловой энергии. Для устранения пористости происходит его обработка специальными составами.

Пластинчатый

Это устройство изготовлено из пластин, поверхность которых отштампована специальным методом. Результатом такой работы становится образование каналов, по которым движется теплоноситель. Между собой пластины уплотнены.
Процесс изготовления такого устройства отличается своей простотой, его легко чистить, он обладает высокой теплоотдачей. Минус – не выдерживает высокое давление.

Пластинчато-ребристый

Состоит из системы разделительных пластин, между которыми находятся ребристые поверхности — насадки, присоединенные к пластинам методом пайки в вакууме.

Предназначены для теплообмена между неагрессивными жидкими и газообразными средами в интервале температур от плюс 200 °C до минус 270 °C.

Обладает малым весом и размерами, высокой прочностью и жесткостью.

Оребренно-пластинчатый

Его конструкция предполагает наличие оребренных панелей маленькой толщины, производство которых происходит при помощи высокочастотной сварки.
Благодаря такой конструкции и применяемым материалам удается достичь высокого температурного режима теплоносителя, малого гидравлического давления, высокого КПД, продолжительного срока эксплуатации, низкой стоимости.

Спиральный

Оснащен двумя каналами, которые навиты в форме спирали около основной разделительной перегородки. Их цель – нагрев и охлаждения жидкостей, обладающих высоким показателем вязкости.

Устройство и принцип работы

Современные модели теплообменного устройства имеют несколько частей. Для каждой характерна своя важная роль:

  • неподвижная плита – к ней крепят все подводимые патрубки;
  • прижимная плита;
  • пластины, оснащенные вставленными прокладками уплотнительного типа;
  • верхняя и нижняя направляющие;
  • задняя стойка;
  • шпильки с резьбой.

Популярные производители

На современном рынке эта продукция представлена в широком ассортименте. Существуют многочисленные модели и производители. Основные критерии выбора:

  • надежность и качество;
  • ремонтопригодность;
  • цена;
  • гарантии;
  • запасные детали.

Смотрите видео о том, как сделать теплообменник своими руками

Рассмотрим подробнее, кто входит в рейтинг лучших изготовителей системы, и цены на них:

  1. Кролл. Производимые модели теплообменников – серии S, SKE, H, SL, NKA, NK, A. Стоимость от 200000 до 700000 рублей.
  2. Дракон-энергия. Модели теплообменных устройств: Др 30, Др 50, Др 100, Др 150, Др 200, Др 500, Др 1000. Цена от 60000 до 400000 рублей.
  3. SWEP – производит теплообменники серии GX, GC, GL, GD, GF, GW. Стоимость от 45000 до 600000 рублей.
  4. Ридан. Производит модели теплообменных устройств серии НН. Цена от 40000 до 800000 рублей.

Теплообменное устройство— это «сердце» любой отопительной системы. Только при его наличии можно получить качественный обогрев дома. Благодаря широкому разнообразию этого отопительного аппарата, очень просто подобрать подходящий для своей системы.

Что такое теплообменник в системе отопления

Немногие знают, как поступает горячая вода в дома и каким образом осуществляется центральное отопление. Одним из элементов этой большой сети являются теплообменники, которые работают как от небольших котельных, так и общегородских ТЭЦ.

Разберем подробнее, что такое теплообменник в системе отопления, как работает и особенности его выбора.

Стандартный разборный теплообменник

Читайте также:
Эксцентриковая шлифмашинка Мастер по пыльной работе

Что такое теплообменник и пластинчатый в частности

Теплообменник — это аппарат, задача которого передавать тепло от одной среды к другой без их смешивания. Есть два наиболее распространенных типа этого оборудования:

Кожухотрубные. Внутри находится комплект изолированных трубок, которые вставлены в кожух. Через него происходит циркуляция холодной воды, а нагревательным элементом выступают внутренние трубки, через которые проходит горячая жидкость.

Пластинчатые. Принцип работы тот же, но передатчиком тепла является комплект пластин. Они достаточно компактные, однако в эффективности теплообмена не уступают кожухотрубным теплообменникам.

Материал для изготовления пластинчатого теплообменника

Пластинчатые теплообменники могут быть нескольких типов:

Разборные представляют собой большое количество плоских элементов. Они легко разбираются для промывки и ремонта, поэтому многие ТЭЦ и ИТП используют именно этот вариант.

В основе паяных содержится комплект пластин, которые спаяны между собой. Поэтому собрать и разобрать устройство невозможно.

В полусварных теплообменниках пластины свариваются по парам. С внешней стороны устанавливаются уплотнения, а парные элементы привариваются между собой. Такой вариант часто используют в работе с агрессивными средами.

В сварных аппаратах все пластины свариваются между собой без добавления уплотнителей. Одна из жидкостей проходит по гофрированному каналу, а вторая — по трубчатому.

Главными элементами пластинчатого теплообменника являются комплект пластин и уплотнительные прокладки, которые расположены между пластинами. Выбор материалов зависит от среды, которую необходимо нагревать.

Пластины — главный элемент нагревательной системы

Устройство пластин

Внутренние пластины имеют одинаковый состав и устройство. Для теплообменников, используемых в коммунальной энергетике, в большинстве случаев применяется нержавеющая сталь типа AISI316.

Реже встречаются более дорогие металлы, например, титан или латунь. Такие материалы могут работать с агрессивными средами. К примеру, их можно найти в теплообменниках морских судов, где агрессивным элементом является морская вода.

Требования к прокладкам

Материал уплотнительных прокладок — это полимерные соединения, в составе которых преимущественно каучук. При выборе нужно учитывать агрессивность теплоносителей:

EPDM — пресная вода с гликолем;

Нитрил — жидкости с маслянистой средой, например, технические масла;

Витон — жидкости, которые нужно нагревать до температуры выше 100 градусов по Цельсию.

Принцип работы теплообменника

Пластины теплообменника имеют по 4 отверстия, по одному в каждом углу, которые предназначены для входа и выхода греющей и нагреваемой среды:

Одна пара необходима для прохождения первичного теплоносителя с высокой температурой, который подается с ТЭЦ.

Вторая пара — для вторичного теплоносителя, который подается, например, в систему отоплен

ия. Он изначально холодный, поэтому нагревается за счет первичной жидкости.

Для более интенсивного теплообмена, устройство каналов выполнено таким образом, что при прохождении теплоносителя внутри теплообменника создается турбулентное завихрение потока. Так достигается максимальное сопротивление течению, турбулентность потока уменьшает образование накипи на пластинах.

Преимущества паяного пластинчатого теплообменника

Паянный теплообменник имеет несколько основных достоинств наряду с другими типами устройств:

стоимость, в сравнении с разборным, — на 30% меньше;

конструкция выдерживает температуру до 200 градусов по Цельсию;

небольшой размер и масса, так как зажимов и уплотнительных прокладок нет;

подходит для установки в частном доме и подключению к котлу;

спайка проводится с добавлением никеля или меди, которые устойчивы к любым агрессивным средам.

Системы и особенности теплообмена: задача теплообменника

Пластинчатые теплообменники можно использовать в различных системах на промышленных объектах и жилых зданиях.

В многоэтажных домах преимущество отдается разборным аппаратам

В многоквартирном доме

В подключении систем отопления и горячего водоснабжения чаще участвует стандартный разборный аппарат. Причин его установки в многоквартирном доме несколько:

срок эксплуатации — от 25 лет, однако уплотнения необходимо менять каждые 5-10 лет;

устройство легко разбирается и поддается ремонту;

мощность можно регулировать самостоятельно, изменив количество пластин.

Такой вариант теплообменника для отопления подходит и для промышленных зон.

Самостоятельный ремонт теплового оборудования недопустим

В частном доме

В частном доме рекомендовано использовать паяный теплообменник по нескольким причинам:

подходит для агрессивной среды;

срок службы аппарата — 15 лет;

гарантирует высокий КПД, благодаря минимальной потере тепловой энергии и высокому уровню теплоотдачи;

так как в конструкции нет уплотнений, протечки невозможны.

Сборка устройства достаточно проста и не занимает много времени.

Оборудование требует регулярную проверку уплотнителей и чистку от накипи

От чего зависит эффективность теплообменника

Качество работы оборудования зависит от:

объема энергии, необходимого для передачи;

организации ремонтных работ.

От этих параметров зависит общая стоимость оборудования и обслуживания, которые влияют на работу устройства.

Читайте также:
Что делать, если сломался смеситель в ванной: ремонтные работы

Как правильно выбрать теплообменник

При установке аппарата в жилом доме требуется сделать детальный расчет. В него входят несколько характеристик:

площадь отапливаемых помещений или примерный расход горячей воды;

температура первичного теплоносителя;

температура холодной воды.

Расчеты проводятся компанией-поставщиком оборудования, которая на основе результатов предлагает варианты теплообменников, которые подойдут для использования в указанных целях.

Пластинчатые теплообменные аппараты: типы, устройство и принцип работы

Введение

Пластинчатый теплообменник – один из видов рекуперативных теплообменных аппаратов, в основе работы которого лежит теплообмен между двумя средами через контактную пластину без смешения.

Типы, устройство и принцип работы пластинчатых теплообменников

Принцип работы всех пластинчатых теплообменных аппаратов одинаков:

  1. На входы ТО подаются теплоносители.
  2. Теплоносители движутся по внутреннему контуру теплообменного агрегата, который сформирован пакетом пластин.
  3. В процессе движения, контактируя с поверхностью пластины, более горячий теплоноситель отдает часть тепла нагреваемой среде.
  4. С выходов теплоносители, с изменившейся температурой, поступают в систему отопления, водоснабжения или вентиляции.
  5. Входные и выходные отверстия теплообменных аппаратов могут иметь различное сечение (у агрегатов Ридан диаметр достигает 500 мм), и с помощью патрубков подключаются к трубопроводу основной системы.

Данный принцип действия и устройство пластинчатого ТО хорошо продемонстрированы в следующем видео:

Принцип работы пластинчатого теплообменника

Виды пластинчатых теплообменников в зависимости от конструкции:

  • разборные;
  • паяные;
  • сварные;
  • полусварные.

Пластинчатые разборные теплообменные аппараты

Пластинчатый разборный теплообменник – устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения.

Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.

Конструкционная схема разборного теплообменника

Разборный теплообменник состоит из следующих элементов:

  • Неподвижная прижимная плита – основной элемент.
  • Пластины теплообменного аппарата, выполнены из нержавеющей стали или титана, прижимаются друг к другу с использованием уплотнительных прокладок. Количество пластин зависит от технических параметров и требований к оборудованию.
  • Пакет пластин – главный функциональный элемент, который образует внутренний контур устройства и осуществляет теплообмен.
  • Несущая база – направляющая балка, на которую надеваются пластины во время сборки агрегата.
  • Подвижная прижимная плита – прижимает весь пакет к неподвижной прижимной плите с помощью элементов крепления: стяжных болтов, подшипников, стопорных шайб.
  • Опорная станина – вертикальный элемент, к которому прикрепляются направляющие балки (верхняя и нижняя несущие балки).

Благодаря высокой скорости рабочих сред внутри разборных теплообменных аппаратов отложения и засоры скапливаются на его внутренних поверхностях медленнее, чем на поверхностях кожухотрубных агрегатов.

Несомненное достоинство данного вида ТО – возможность полной разборки аппарата, что позволяет производить не только промывку пластин, но и их механическую очистку.

Также стоит отметить, что возможность полной разборки агрегата позволяет не заменять его целиком в случаях протечек, а быстро выявить нерабочие элементы, поменять их и вновь запустить теплообменник в эксплуатацию. При наличии необходимых запасных частей «под рукой» вся процедура займет от нескольких часов до 1 часа.

Паяные теплообменные аппараты

Паяные теплообменники также в своей основе содержат пакет пластин, но отличие от разборных заключается в том, что они спаяны между собой, поэтому сборка/разборка такого пакета – невозможна.

Пайка производится с помощью никеля или меди, поэтому обозначают два основных вида паяных пластинчатых теплообменников: никельпаяный и меднопаяный. Никелевый припой используется для аппаратов, которые будут работать с более агрессивными средами.

Паяный пластинчатый теплообменник в разрезе

Паяные теплообменные аппараты применяются в основном в бытовом сегменте благодаря своей низкой стоимости, простоте и небольшим габаритам. Чаще всего подобный тип устройств можно встретить в системах отопления частных домов, где теплообменник подключается к водонагревательному котлу.

Полусварные теплообменники

Полусварные теплообменные аппараты – агрегаты, в которых пакет пластин сделан комбинированным способом:

  • пластины попарно свариваются между собой;
  • с внешней стороны такого сдвоенного мини-пакета прикрепляются уплотнения;
  • далее прикрепляется следующий сваренный мини-пакет.

Места попарной сварки пластин

Подобный тип конструкции позволяет использовать полусварные теплообменные аппараты в работе с агрессивными средами или в охлаждении, поскольку сварка пластин исключает возможность утечки фреона в охлаждающем контуре.

Сварные теплообменники

Сварные теплообменные аппараты – устройства, в которых пластины сварены между собой без использования уплотнителей.

Внешний вид сварного теплообменника

Читайте также:
Цветы из полимерной глины: пошаговая инструкция для начинающих

Один из потоков теплоносителей движется по гофрированным каналам, второй по трубчатым. Принцип работы пластинчатого сварного теплообменника показан в этом видео:

Принцип работы сварного теплообменника

Сварные теплообменные аппараты применяются в технических процессах с предельными параметрами: высокими температурами (до 900 градусов Цельсия), давлением (до 100 бар) и крайне агрессивными средами, поскольку отсутствие резиновых уплотнителей и сварной метод сцепления исключают возможность протечки и смешения сред.

Основные недостатки подобного типа агрегатов: высокая стоимость и габариты.

Применение пластинчатых теплообменников

Пластинчатые теплообменные аппараты используются в:

  • энергетике;
  • отоплении;
  • вентиляции и кондиционировании;
  • судоходстве;
  • пищевой промышленности;
  • машиностроении;
  • автомобилестроении;
  • металлургии.

Технические характеристики пластинчатых теплообменников

Пластинчатый теплообменник имеет различные технические характеристики в зависимости от типа конструкции:

Утепления подвала изнутри и снаружи, борьба с водой

Предпочтительнее делать утепление подвала снаружи, так как этот процесс изнутри периметра может навредить фундаменту. Но теплоизоляция подвала изнутри в уже построенных домах намного дешевле.

Для принятия решения о возможности утепления подвала снаружи или изнутри, нужно определиться насколько влажные его стены и откуда берется влага.

Почему внутри подвала влажно и что делать

Иногда на стенах подвала можно заметить капельки воды. Причин этому может быть две.

  • Вода поступает из грунта через стены или из пола подвала.
  • Вода конденсируется на стенах из теплого поступающего воздуха летом. Так как стены подвала, которые не утеплены снаружи, будут всегда холодными (температура грунта).

Теперь рассмотрим два варианта:

  • что делать, если подвал обводнен, и в него приникает вода из грунта;
  • если подвал сухой, то как его можно утеплить изнутри и как это делается своими руками.

Если вода проникает, то утеплять изнутри недопустимо

Утепление подвала изнутри — это вынужденная мера, когда наружное утепление невозможно или не выгодно по затратам. Проводить внутреннее утепление подвала можно лишь на сухих стенах фундамента. Но при этом возникает риск увеличения скорости разрушения фундамента из-за его замораживания.

Если вода проникает в подвал из грунта через фундаментные стены, то укладывать утеплитель на внутреннюю боковую поверхность фундамента категорически не допускается.

Внутреннее утепление вызовет еще большее увлажнение фундамента, а также понизит его температуру в зимний период, так как наружное утепление отсутствует.

Область промерзания внутри фундамента намного увеличится, что в совокупности с повышенной влажностью, очень быстро выводит фундамент из строя.

Как осушить и отвести воду

Устранить проникновение воды в подвал из грунта или сложно или невозможно. Чаще нужно обустраивать вокруг дома дренажную систему или ремонтировать существующую.

В таком случае, то необходимо отрывать фундамент снаружи. В таком случае речь о внутреннем утеплении теряет всякий смысл, поскольку стены фундамента становятся свободными для наружного утепления и для дополнительной гидроизоляции.

Могут быть и другие варианты осушения. Иногда вопрос решается комплексно для группы домов или целого поселка, путем отрытия дренажной канавы.

Иногда подвал осушить можно только обустроив в нем колодец с насосом. Хоть откачивать родник под домом занятие крайне неблагодарное, но что делать? Этот источник воды может послужить для целей водоснабжения дома, поэтому не вся работа насоса будет «на ветер».

Таким образом, для влажного подвала остается один способ утепления – наружный с предварительным осушением грунта.

Правильно — утепление снаружи

Кратко о наружном утеплении подвала. Если речь идет об отапливаемом подвале, то слой утеплителя снаружи не рекомендуется делать меньше чем 0,15 метра.

Для наружного утепления самого фундамента с целью его сохранения и уменьшения теплопотерь из дома, толщина утеплителя может быть 0,1 метр для верхнего пояса по периметру дома высотой 0,5 метра, и 0,05 метра для нижнего, такой же высоты.

Общая схема утепления фундамента без подвала снаружи и изнутри с гидроизоляцией бетонной конструкции приведена на рисунке.

Теперь подробней рассмотрим вариант, когда грунт вокруг подвала сухой, и имеется необходимость утеплить подвал, а сделать это целесообразно только изнутри.

Пенополиуретан для утепления подвала изнутри

Конденсация пара на стенах фундамента летом происходит всегда, потому что стена, имеющая температуру грунта, будет ниже точки росы для теплого воздуха, поступающего в подвал.

Утепляя подвал изнутри необходимо уложить утеплитель на стену таким образом, чтобы между ним и поверхностью не оставалось пустого пространства.

Применение утеплителя, который хорошо пропускает пар, для утепления стен подвала изнутри, не допускается, так как он тут же взмокнет от конденсата.

Читайте также:
Установка радиаторов: назначение и устройство, разновидности и материалы, обвязка и монтаж

Лучшим вариантом для внутреннего применения является напыляемый пенополиуретан. Он крепко сцепляется с любой поверхностью и заполнит собой все щели, так что пустот не останется.

Поверх пенополиуретана строится фальшстена, которая опирается только лишь на боковые поверхности. Сплошность утеплителя при этом нарушать нельзя.

Как применить экструдированный пенополистирол

Также отлично подходит для утепления подвала изнутри экструдированный пенополистирол. Но материал плитный, поэтому стена должна быть выравнена перед его нанесением тщательно. В сложных местах, допускается вырезание материала по конфигурации поверхности.

Нельзя крепить утепляющий материал к непрочным основам, т.е. к штукатурке, или отслоившемуся бетону. Перед утеплением на клею или пенящимися составами, штукатурка удаляется, за исключением особопрочных слоев. Стена при необходимости выравнивается клеющим раствором, а при значительных изъянах — очень прочным цементно-песчаным раствором.

В случае утепления подвала изнутри дополнительное крепление дюбелями листов утеплителя применять не нужно и вредно.

Слой пенополистирола должен быть сплошным и полностью прилегать к поверхности фундамента на клею. Стыки между листами (шип-паз) промазываются герметиком. Таким образом, создается полное препятствие для движения пара через слой утеплителя пенополистирола и конденсации его в пустотах на стене.

Пенопласт для утепления подвала применять не рекомендуется ввиду его не высокой паро-водоустойчивости. Возможно применение только экструдировнных не впитывающих воду вариантов.

Толщина утеплителя

Что бы утепление подвала изнутри было достаточным по минимальному уровню теплопотерь, толщина утеплителя должна быть:

  • 10 сантиметров для пенополистирола;
  • 8 сантиметров для пенополиуретана.

Но рекомендуется это значение увеличить на 40 — 50 %, если подвал предполагается отапливать и поддерживать в нем температуру 20 — 25 градусов, что бы выйти на рекомендуемый уровень теплоизоляции.

Как утеплить подвальное помещение самостоятельно

Что бы утеплить подвал изнутри самостоятельно, можно выбрать только лишь экструдированный пенополистирол. Этот утеплитель относительно дорог. Но дешевый пенопласт в подвале не применим, из-за того, что он может постепенно насыщаться влагой.

Процессы утепления подвала изнутри:

  • обирается имеющаяся штукатурка, стена очищается от пыли;
  • стена пропитывается гидрофобизатором;
  • стена выравнивается при необходимости клеем для пенопласта или крепким (сопоставимый с бетоном) цементно-песчаным раствором;
    на стену наклеиваются листы пеноплистирола. Клей наносится на стену зубчатым шпателем, листы прикладываются и простукиваются киянкой, при стыковке швы между листами промазываются герметиком.

Применяются только листы пенополистирола стыкуемые в паз.
Поверхность наклеенных листов выравнивается теркой при необходимости.
Сверху на пенополистирол наносится декоративная штукатурка или поверх утеплителя строится фальш-стена.

Если необходима отделка

В подвале пенополистирол не требует дополнительной защиты, так как солнечный свет в подвал не проникает. Поэтому наклеенный своими руками слой на стену можно не покрывать дополнительной защитой.

Если же необходима отделка, то проще всего при утеплении подвала изнутри, сделать следующее:

  • покрыть пенополистирол тонким слоем клея зубчатым шпателем 8 мм;
  • утопить в клее штукатурную стекловолоконнную сетку с ячейкой 4 — 5 мм;
  • поверх сетки фигурным валиком нанести еще один слой клея, получив фигурную поверхность, которая годится к покраске.

Но этот простой вариант можно заменить на любой другой отделочный, за исключением тяжелой отделки (керамическая плитка, лепнина…), и способов, где нужно пробивать сплошность утепления. Чаще всего применяется или фигурная штукатурка или выравнивание стены под обои.

Как теплоизолировать пол

Конечно, имеет смысл утеплять стены подвала, только лишь когда сделано надежное утепление пола. Холод проникает в подвальное помещение со всех сторон. Нужно создать коробку из утеплителя, за исключением разве что теплоизоляции верхнего перекрытия, если подвал будет отапливааться.

Как правило, пол в подвале насыпной по грунту. Такой тип пола можно утеплить путем его поднятия на 20 — 30 см с укладкой водоупорного крепкого утеплителя под железобетонной стяжкой. Эта обычная технология предусматривает:

  • укладку пенополистирола толщиной 15 сантиметров на грунт (утрамбованную песчаную подсыпку);
  • закрытие пенополистирола гидроизолятором;
  • заливку поверху железобетонной стяжки толщиной от 5 сантиметров с армированием металлической сеткой.

Только проделав подобный комплекс работ по утеплению подвала изнутри можно сделать из него отапливаемое помещение ниже уровня земли. Но прежде чем приступать к такой работе, нужно еще раз подумать о возможности провести наружное утепление стен подвала, что бы не нанести вред конструкции.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: