Установка стабилизатора напряжения на выходе преобразователя

Полное руководство по правильному использованию инверторных стабилизаторов

Наиболее распространённая причина поломки стабилизаторов – их неправильная эксплуатация. Пользователи часто допускают типичные ошибки в расположении, подключении и применении прибора, которые приводят к выходу его из строя.

Данная статья даёт полное пошаговое руководство по использованию инверторных стабилизаторов, цель которого уменьшить число пользовательских ошибок и продлить безаварийную эксплуатацию оборудования «Штиль».

Содержание

  • Подготовка к покупке инверторного стабилизатора
  • Подготовка инверторного стабилизатора к эксплуатации. Распаковка и размещение
  • Подключение инверторного стабилизатора
  • Эксплуатация инверторного стабилизатора
  • Обслуживание и ремонт инверторного стабилизатора
  • Официальный интернет-магазин производителя «Штиль»

Подготовка к покупке инверторного стабилизатора

Необходимо заранее определиться с нагрузкой – её максимальная потребляемая мощность (с учетом пусковых токов) должна быть не больше выходной мощности планируемого к покупке прибора. Отметим, что рекомендовано превышение выходной мощности стабилизатора над максимальным энергопотреблением нагрузки на 20-30% (запас по мощности).

Заранее следует решить и вопрос с расположением стабилизатора.

Оно должно соответствовать следующим требованиям:

  • свободное пространство в количестве, достаточном для размещения стабилизатора в эксплуатационном положении;
  • возможность безопасного крепления в эксплуатационном положении (актуально в первую очередь для приборов с навесным корпусом – стена должна гарантированно выдерживать их вес);
  • постоянный воздухообмен между устройством и окружающей средой (расстояние между вентиляционными отверстиями и ближайшей поверхностью – либо согласно рекомендациям производителя, либо, при отсутствии рекомендаций, не менее 10-15 см);
  • твердое покрытие – установка стабилизатора на мягкой, вязкой и ворсистой поверхности недопустима;
  • беспрепятственный доступ пользователя к органам управления и индикации;
  • температура и влажность в установленных для устройства пределах (прописываются в технической документации);
  • отсутствие агрессивной и опасной среды.

Понятие агрессивной и опасной среды разберем подробнее – итак, инверторный стабилизатор нельзя эксплуатировать:

  • вне помещения (т. е. на улице);
  • в условиях повышенной концентрации коррозионно-активных веществ (сернистый газ, нитраты, сульфаты и прочие), а также легколетучих взвесей (бытовая и строительная пыль, опилки, мука, зола и т.п.);
  • рядом с источниками сильной вибрации и открытого пламени, а также в непосредственной близости от легковоспламеняющихся и взрывоопасных веществ, материалов, жидкостей и газов.

Кроме того, размещение прибора не рекомендовано:

  • в районе стыков водопроводных труб (риск протечки и последующего залива стабилизатора);
  • в зоне доступа детей и животных;
  • в области, характеризующейся длительным падением прямых солнечных лучей (вызывают разогрев корпуса и последующее срабатывание тепловой защиты).

Подготовка инверторного стабилизатора к эксплуатации. Распаковка и размещение

Распаковывать купленное изделие следует аккуратно и без спешки, не допуская его падений и повреждений. Если стабилизатор хранился или транспортировался при температурах ниже нуля, то перед первым включением устройство необходимо «согреть», выдержав при температуре выше нуля на протяжении восьми и более часов.

Перед началом любых работ со стабилизатором следует изучить сопутствующее ему руководство по эксплуатации. В случае возникновения вопросов по приведённой в нём информации – обратитесь к специалистам.

После ознакомления с документацией можно приступать к размещению стабилизатора на выбранном месте эксплуатации, предварительно убедившись, что оно соответствует всем установленным требованиям. Ещё раз отметим, что располагать прибор можно только прописанным для него способом. Использование в другом положении влечет серьёзную опасность, в частности, из-за перекрытия вентиляционных отверстий и нарушения нормальной циркуляции воздуха через корпус (необходима для отвода выделяющегося в ходе работы тепла).

Подключение инверторного стабилизатора

В роли входных и выходных разъёмов у устройства могут выступать либо привычные всем вилка и розетки, либо клеммная колодка. Во втором случае работы по подключению потребуют электромонтажных навыков, неукоснительного соблюдения техники безопасности и определённого инструмента. Поэтому мы рекомендуем доверить их квалифицированному электрику. Однако, если вы уверены в своих силах, имеете необходимый диэлектрический инструмент и знаете правила безопасности, то работать с клеммной колодкой можно и самостоятельно.

В процессе подключения стабилизатора, вне зависимости от его входных/выходных разъёмов, необходимо соблюдать несколько общих правил:

  1. Присоединение сети и нагрузки осуществляется только после размещения устройства на месте эксплуатации, а также согласно указанному в технической документации алгоритму.
  2. Стабилизатор в момент соединения с сетью должен находится в выключенном состоянии (автоматический выключатель в положении «ОFF»). Отметим, что в таком же состоянии должна пребывать и нагрузка в момент её подключения к стабилизатору.
  3. Все соединения до упора и с максимальной затяжкой! Вилки не должны болтаться в розетках, а кабели – в клеммах (в случае устройства с клеммной колодкой важно также соответствие между фактическим подключением и приведённой на корпусе изделия маркировкой).

Кроме правил есть и ряд запретов, нарушение которых может привести как к повреждению стабилизатора, так и к угрозе жизни и здоровью человека.

Эксплуатация инверторного стабилизатора

Инверторный стабилизатор функционирует в автоматическом режиме и не нуждается в постоянном контроле со стороны владельца. Устройство обеспечит надежной защитой от сетевых перепадов, отклонений и искажений как бытовую технику и электронику, так и большинство образцов промышленного электрооборудования. Главное – не мешать ему работать, а именно: ни нагружать сверх номинала, ни вскрывать, ни разбирать, а также не вносить каких-либо изменений в схему и конструкцию.

Читайте также:
Электродвигатель: история и классификация по типам: видео - Asutpp

В процессе эксплуатации к стабилизатору следует относиться аккуратно и оберегать от:

  • падений и ударов;
  • проникновения внутрь корпуса любых жидкостей, пыли и инородных предметов;
  • воздействия влаги и слишком высокой/низкой температуры;
  • попадания в условия агрессивной и опасной среды (рассмотрены в первом разделе данной статьи).

Обслуживание и ремонт инверторного стабилизатора

Инверторный стабилизатор не требует специфического обслуживания в течение всего срока эксплуатации. Достаточно своевременно очищать устройство от пыли и прочих загрязнений (особое внимание нужно уделить вентиляционным отверстиям), а также проверять надежность электрического соединения с сетью и нагрузкой. При необходимости следует производить подтяжку проводов в соответствующих им разъёмах и клеммах.

Официальный интернет-магазин производителя «Штиль»

На данном ресурсе представлен весь модельный ряд стабилизаторов «Штиль» – именно этот бренд занимает первое место по объемам производства и продаж устройств подобного типа. Заказать инверторные стабилизаторы напряжения можно прямо на сайте. Технически подкованные менеджеры готовы оказать всю необходимую помощь в подборе подходящего под конкретную задачу стабилизатора. Они также ответят и на любые вопросы по дальнейшей эксплуатации и гарантийному/постгарантийному обслуживанию устройства. Доставка купленного стабилизатора осуществляется во все регионы России.

Подключение однофазного стабилизатора напряжения

Электроэнергия, поступающая к нам в квартиры, имеет свои стандарты. Например, для сети питания 220 вольт отклонение не должно превышать 10% от номинала. Такой разбег в величине напряжения не всегда благотворно сказывается на функционировании чувствительных электрических устройств бытового назначения, приборов освещения. Организации, поставляющие электроэнергию, применяют трансформаторы для линий питания, по которым приходит электрический ток к домам.

При работе под нагрузкой линия выдает нижний предел напряжения. При дальнейшем возрастании нагрузки нормативный предел снижается, так как мощность подстанции исчерпывается. Также функционирует и сеть 380 В. Это объясняет режим работы установок в обычных условиях. Реально же снабжение электричеством домов зимой бывает намного хуже.

Эту ситуацию можно исправить, применяя приборы, которые стабилизируют основные параметры электрического тока. Стабилизаторы применяются в разных местах. Стоимость такого устройства небольшая, а его монтаж и подключение довольно простое, и позволяет произвести всю работу самостоятельно.

Определение типа защиты

В настоящее время имеются стационарные приборы, стабилизирующие напряжение, монтаж которых осуществляется на весь дом, а также переносные модели, которые могут обслужить всего несколько электрических устройств. Кроме этого, стационарные стабилизаторы бывают трехфазными, однофазными. Это зависит от условий использования. Подключения на 1-фазную и 3-фазную сеть имеют свои отличия.

В квартире или собственном доме лучше подключить 1-фазный стабилизатор возле распредщитка. Это дает возможность защиты всей сети от воздействия перегрузок. Поэтому, рассмотрим инструкцию по монтажу для 1-фазного устройства.

Выбор места монтажа

При самостоятельной установке вся ответственность ложится на вас, так как при неправильном монтаже прибор может выйти из строя, может произойти пожар и т. д.

Чтобы своими руками подключить стабилизатор напряжения в квартире, необходимо учесть некоторые советы:

  • Помещение выбирается сухим, проветриваемым, так как основной причиной неисправности становится наличие влаги в корпусе прибора.
  • При монтаже в нише, проверьте, насколько безопасны отделочные материалы на предмет горючести.
  • Нужно обеспечивать зазор между стенками и стабилизатором. Необходимо отступать на 10 см.
  • При настенном монтаже, проверьте, чтобы крепление выдержало массу настенного стабилизатора.

Подключение к сети

Самостоятельное подключение к сети стабилизатора не представляет большой сложности. На тыльной стороне устройства есть колодка с клеммами на пять разъемов. Чаще всего провода чередуются так: фаза и ноль, заземление, нагрузочные фаза и ноль.

Для подключения нужно всего лишь сделать правильный выбор сечения кабеля. Далее осуществляется самостоятельный монтаж. Схема подключения стабилизатора на 220 вольт:

Типы стабилизаторов

Когда вы решились установить стабилизатор, то необходимо выбрать и приобрести модель стабилизатора. Чтобы не запутаться с выбором оптимального варианта прибора, нужно знать, что все устройства выполняют подобную функцию, но имеют отличия по принципу действия. Для получения качественной энергии для дома подходят 2 типа приборов:

Сервоприводное устройство, которое имеет схему сравнения, служащую для управления небольшим моторчиком. Он вращается в разных направлениях, и двигает бегунок, снимающий ток. В итоге на выходе получается стабильная величина напряжения 220 вольт. Достоинством такого устройства является плавное регулирование. Это дает возможность получения напряжения без перепадов.

Релейное исполнение устройства стабилизации имеет свои отличия по принципу действия. В корпусе устройства находится трансформатор с клеммами. Напряжение входа умножается на коэффициент, и подводится для каждого вывода. Электронные элементы управляют действием релейного блока, переключающего при необходимости выводы трансформатора. За счет этого на выходе стабилизатора получается напряжение 220 вольт. Отрицательным фактором таких устройств является появление небольших скачков напряжения, когда происходит переключение ступеней.

Третьим типом стабилизаторов является электронный прибор. Он относится к дорогостоящим приборам, хотя его принцип действия мало чем отличается от релейного устройства. У него вместо реле работает электронный ключ, переключающий выводы трансформатора, на тиристорах.

Ступени стабилизатора

Все варианты стабилизаторов имеют несколько ступеней работы. От их числа зависит качество выдаваемого напряжения. Для понимания работы ступеней рассмотрим пример. Когда подается напряжение 220 вольт нормального значения, то прибор прогоняет его по схеме без изменений. Когда напряжение падает до предельных значений, то электронный ключ, либо реле подключают 1-ю ступень, а на выходе появляется стабильное напряжение 220 вольт.

Читайте также:
Ящик для инструментов: обзор моделей, предлагаемых торговлей

Последующее падение напряжения принуждает стабилизатор переключиться на другие ступени, которые позволят ему выдать необходимые 220 вольт. Когда ступеней уже не хватает, то стабилизатор не сможет повысить напряжение. Чем больше число ступеней, тем шире его интервал регулировки напряжения.

Советы по подключению стабилизатора напряжения:

  1. Перед монтажом всегда отключайте питание сети в электрическом щите.
  2. Подключите вспомогательную защиту прибора в виде автоматического выключателя и устройства защитного отключения. Это продлевает срок его работы. Монтировать автоматику целесообразно за счетчиком, но перед защитой.
  3. Электрическая сеть бытового назначения должна иметь контур заземления. Монтаж стабилизатора без заземления запрещается согласно правилам электробезопасности.
  4. Монтаж стабилизирующего устройства в доме до счетчика запрещен. Оптимальным вариантом установки стабилизатора будет выполнение его по вышеуказанной схеме.
  5. Запрещается подключать стабилизатор сразу после заноса его с мороза в квартиру. Внутри корпуса скапливается конденсат, который может сильно повредить устройство при включении, и сократить срок службы. На улице также запрещается его установка.
  6. Стабилизатор небольшой мощности до 5 киловатт подсоединяется прямо к розетке. Этот способ приемлем для гаражных условий, дачного дома. Иногда осуществляют установку переносного стабилизатора отдельно для цифровой техники, например, на компьютер, телевизор и т. д.

Для трехфазной сети 380 вольт стабилизатор подключают на каждую фазу по одному устройству, соединяя их схемой «звезды». Этим способом достигается экономия денежных средств на покупке устройств, а также на его обслуживании и ремонте, так как 3-фазное устройство намного дороже.

  • После монтажа нужно проконтролировать правильность соединений и монтажа. Для этого подключают автоматы ввода в распредщите. Треск, гудение, искрение не допускаются. Если таких признаков нет, то подключение стабилизатора напряжения выполнено правильно.
  • Не допускается подключать стабилизатор на нагрузку, превышающую мощность прибора. Резерв его мощности должен быть не менее 30%.
  • Правильная схема установки чаще всего изображается на корпусе устройства. Сначала нужно ориентироваться на эту схему. Если такой схемы нет, то оптимальным вариантом являются данные рекомендации. Популярные модели стабилизаторов подключают именно таким образом.

Каждый год необходимо осуществлять проверку надежности соединений проводки в клеммниках, при необходимости подтягивать их затяжку.

Пример подключения стабилизатора

Домашний счетчик, после него два автомата.

Верхний выключатель отключает фазу, другой – ноль. Один провод поступает на дом, а другой на летнюю кухню.

Установка стабилизатора напряжения

Все знают, как опасны для бытовой техники перепады напряжения в сети. Чтобы защитить себя от необходимости ремонтировать дорогостоящие электроприборы, многие решают установить в доме стабилизатор напряжения.

Если на предприятиях обслуживание и установка стабилизатора напряжения доверена специалистам, то в домашних условиях пользователи часто хотят обойтись своими силами. Есть модели бытовых стабилизаторов, с подключением которых справиться довольно просто, но для установки некоторых всё же лучше пригласить специалиста.

Если вы приобрели прибор в холодное время года, то с установкой придётся подождать. Производителями рекомендуется выдержать его не менее суток при нормальной температуре.

Как правильно выбрать место для установки стабилизатора напряжения

Для обеспечения нормальной работы прибора нужно придерживаться требований к помещению, где вы планируете его установить. Поэтому внимательно прочитайте паспорт изделия, в котором чётко указано, где должен быть установлен стабилизатор.

Основные требования к помещению для установки стабилизатора:
  • Соблюдение температурного режима

Для однофазных приборов минимальная отметка составляет +5, а для трёхфазных -5 градусов. Верхний предел +45 градусов тепла. Рекомендуется устанавливать стабилизатор таким образом, чтобы на него не попадали прямые солнечные лучи.

  • Теплообмен и вентиляция

Так как при работе стабилизатор выделяет тепло, для вентиляции необходимо оставить свободное пространство не меньше 50 см. между его корпусом и стенами.

Ни в коем случае нельзя ставить прибор на ковёр, это нарушит теплообмен и приведёт к перегреву стабилизатора.

Помещение должно быть сухим, чтобы не образовывался конденсат на внутренней поверхности корпуса, что является частой причиной его выхода из строя.

  • Пожарная безопасность

Если стабилизатор напряжения устанавливается в нише, то необходимо учитывать пожаробезопасность отделочного материала. Лучше всего подходят кирпичные, стеклотекстолитовые или бетонные поверхности.

Один из нюансов выбора места для установки стабилизатора напряжения – уровень производимого им шума. Хотя у стабилизаторов нового поколения уровень шума довольно низкий, но всё же в спальне он будет вам мешать. Лучше всего установить его в нежилой комнате, желательно в прихожей либо в другом отапливаемом подсобном помещении, либо выбрать электронный стабилизатор напряжения.

Правила подключения стабилизатора напряжения

При установке стабилизатора напряжения необходимо в первую очередь соблюдать правила техники безопасности.

  1. Перед началом работ убедитесь, что дом обесточен, электроэнергия на вводном щитке отключена.
  2. Для защиты пользователя от поражения электричеством и вредного воздействия электромагнитного поля, прибор обязательно должен быть заземлён. Сама техника в этом случае будет защищена от поломок при возникновении аварийных ситуаций, в сети снизится риск появления помех. Для этого медный провод от корпуса прибора проводится к заземлительной шине. Желательно, чтобы такую работу выполнял квалифицированный электрик.
  3. Убедитесь, что выбран кабель нужного сечения. Сечение кабеля в зависимости от мощности и тока вы можете посмотреть в этой статье нашей базы знаний.
Читайте также:
Энергосбережение дома

В быту могут применяться стабилизаторы как однофазные, так и трёхфазные.

Для обеспечения стабильного питания отдельно взятого прибора, например, насоса, системы отопления, компьютера или холодильника, вам подойдёт однофазный стабилизатор мощностью до 3кВт, например Энергия APC-2000 или Ресанта Lux АСН-3000Н/1-Ц. Перед установкой переведите переключатель прибора в положение «Выключен».

Самыми простыми для установки являются стабилизаторы с невысокой мощностью, производства компаний Штиль, Ресанта и Энергия, имеющие на задней части корпуса шнур, вилку и две-три розетки. Для ввода в эксплуатацию такого прибора не нужны специальные навыки, достаточно просто включить стабилизатор в розетку и уже через него подключить электроприбор.

Если корпус прибора оснащён только клеммами, шнур с вилкой приобретаются отдельно. Соответствующие концы шнура прикрепляются к клеммам. Стабилизатор включается на короткое время, до достижения показаний вольтметра 220 вольт. При отключении сохраняется положение электронных ключей или щёток, которые обеспечили стабилизированную подачу тока. Присоединив на выход провод с розеткой, подключаем в неё бытовую электротехнику.

Обратите внимание, что шнуром с вилкой можно подключать лишь стабилизаторы напряжения менее 3 кВт мощностью. Все что выше по мощности нужно подключать к щитку напрямую.

К электросчётчику прибор подключают, соединяя фазу и нуль провода с соответствующими входами. К нагрузке обязательно проводится от счётчика нейтральный провод, прокладывая фазу к нему от выходных клемм стабилизатора.

Если вы хотите защитить от перепадов электроэнергии не отдельно взятый прибор, а сразу всю домашнюю технику, и к вашему дому от распределительного щита подаётся 380В, можно использовать либо один трёхфазный стабилизатор напряжения, либо три однофазных, соединённых по схеме «Звезда».

По цене установка сразу трёх однофазных стабилизаторов напряжения выходит дороже, чем один трёхфазный, но этот способ гораздо надёжнее. Во первых, при выходе одного из них из строя два других продолжат работать, а во вторых, ремонт или замену такого стабилизатора будет произвести гораздо легче и менее затратно.

Эксплуатация стабилизатора напряжения

После того, как все провода соединены в нужном порядке, переводим выключатель прибора в положение «Включено». При этом загорится световой индикатор, сигнализируя о начале работы стабилизатора. В дальнейшем устройство работает в автоматическом режиме. Если вдруг произошло отключение электроэнергии, то после его возобновления стабилизатор не требуется перезапускать, он включится самостоятельно.

Ещё несколько правил, которые нужно соблюдать для обеспечения длительной безаварийной работы стабилизатора напряжения и вашей личной безопасности.

  • Так как корпус прибора не водостойкий, не ставьте на него никаких ёмкостей с жидкостями.
  • Следите, чтобы не перекрывались вентиляционные отверстия на корпусе стабилизатора. В противном случае он может перегореть от перегрева.
  • Избегайте контакта корпуса с металлическими предметами.
  • При подключении к прибору дополнительной бытовой электротехники проверяйте заранее, не превысит ли это допустимую нагрузку.
  • Не протирайте пыль на корпусе стабилизатора напряжения влажной тряпкой, и тем более не стоит пользоваться для этого моющими средствами.
  • При поломке стабилизатора для его ремонта воспользуйтесь помощью квалифицированных сервисных центров.

Похожие статьи

Выбор сечения кабеля по мощности и току

При проектировании электросети в доме очень важно рассчитать максимальную нагрузку на кабель, а исходя из этих значений выбрать сечение кабеля. Это залог вашей безопасности! При неправильном выборе сечения, кабель может перегреться, замкнуть, а еще хуже – воспламениться. Не пренебрегайте этим! Если вы сомневаетесь – лучше выберите кабель бОльшей толщины.

В этой статье мы приводим таблицу зависимости максимального тока через кабель от его сечения. Таблица составлена для медных и алюминиевых проводов, а также для напряжений 220 и 380 вольт (однофазное и трехфазное подключение). Также приведем формулы для вычисления тока, сопротивления, напряжения (закон Ома) и мощности.

Схема подключения реверсивного магнитного пускателя.

08 Апр 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.

Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.

На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.

В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.

Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.

Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.

Читайте также:
Фото и цены кондиционеров: описание, отзывы

1. Исходное состояние схемы.

При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.

Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.

На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.

2. Работа цепей управления при вращении двигателя влево.

При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.

Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.

На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.

3. Работа цепей управления при вращении двигателя вправо.

Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.

Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.

При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:

Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.

Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.

4. Силовые цепи.

А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.

Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.

Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.

А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.

Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.

Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».

Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.

5. Защита силовых цепей от короткого замыкания или «защита от дурака».

Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.

Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».

Читайте также:
Трещины и сколы на плитке: Откуда берутся и что с этим делать

А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.

6. Заключение.

Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.

И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.

А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!

Особенности подключения и схема реверса электродвигателя

Просто подключить электромотор и заставить его крутиться в одну сторону достаточно легко, а вот реализация возможности смены направления вращения уже может вызвать трудности. Самостоятельно сделать подключение реверса можно без особого труда, если под рукой имеется схема реверсивного пуска.

На современном производстве и в быту люди привыкли пользоваться различным оборудованием, значительно облегчающим решение разного рода задач. Домашние умельцы нередко своими руками собирают нужный электроинструмент, что позволяет экономить на покупке новой техники или же в наличии имеются все необходимые комплектующие. Это также касается такого важного в хозяйстве инструмента как дрель. Помимо нужных деталей и материалов, для самодельной дрели понадобится реверсивная схема подключения электродвигателя. Просто подключить электромотор и заставить его крутиться в одну сторону достаточно легко, а вот реализация возможности смены направления вращения уже может вызвать трудности.

Устройство и принцип действия электромотора

Электромотором принято называть устройство, в котором рабочая часть вращается под влиянием электромагнитного поля. Основными составляющими здесь являются неподвижный статор и движущийся вокруг своей оси ротор. В статорной части создаются импульсные электромагнитные волны, приводящие в движение роторную часть. Как правило, чем мощнее электропривод, тем больше габаритные размеры двигателя. Хотя современная техника стремится к миниатюризации, поэтому на рынке можно найти достаточно мощные модели вполне компактного размера.

Из множества разновидностей электрических силовых агрегатов чаще всего встречаются:

  • моторы коллекторные (короткозамкнутые), где ротор питается и приводится в действие от так называемых щеток, в свою очередь взаимодействующих с коллекторными ламелями;
  • двигатели асинхронные, работающие под воздействием индуктивных сил, возникающих в магнитном поле.

Для примера рассмотрим типовую асинхронную модель. Здесь питание подключается к обмоткам статора, в результате чего генерируются электромагнитные волны. При переменном напряжении возникает нестабильное поле, характеризующееся определенной частотой колебаний, смещающих ротор. Для беспрепятственного смещения между статорной и роторной частью специально оставляют небольшой промежуток. Установленные на статоре обмотки взаимодействуют с обмотками ротора, создавая электродвижущую силу. При этом образующиеся магнитные волны движутся в разных направлениях относительно статора, поэтому такой мотор называют асинхронным. Чаще всего для его подключения используются три фазы, но при необходимости большинство моделей можно приспособить к работе и от однофазной сети.

Нужные компоненты

Своими силами организовать реверсивное подключение можно без особого труда, если под рукой имеется схема реверсивного пуска. Важным компонентом, значительно облегчающим процесс монтажа и запуска в работу электромотора, является контактор, который может быть в составе магнитного пускателя. Конечно, можно приспособить для включения/выключения агрегата простой рубильник или автоматический выключатель. Такой вариант допускается, но для нормальной работы электромотора нужны достаточно большие пусковые токи, которые могут быть опасны для обслуживающего персонала и оборудования.

Если во время включения случится пробой, то здоровью оператора может быть нанесен вред, а сам реверсивный электродвигатель и выключатель выйдут из строя. Поэтому для сведения риска поражения электрическим током к минимуму желательно использовать контактор, отделенный от той части, с которой непосредственно взаимодействует человек. В современных устройствах подобного типа имеется отдельный модульный блок с катушкой, образующей электромагнитное поле. Для работы такой катушки обычно достаточно 12-вольтового напряжения или же больше. При поступлении тока от источника питания на железный сердечник с прикрепленной контактной пластиной он втягивается внутрь и замыкает контактную группу, в результате чего электромотор запускается. Когда питающее напряжение пропадает, сердечник возвращается в исходное состояние и контакты размыкаются.

Типовая принципиальная схема реверса

От обычного способа электромонтажа, подключение электродвигателя с возможностью реверса отличается только введением дополнительного модульного блока.

По сути, здесь задействовано два элемента управления, заставляющие мотор крутиться в разные стороны – один влево, другой вправо. Для их активации предусмотрены соответствующие кнопки SB2 и SB3. Латинскими литерами A, B и C обозначены входящие линии от трехфазного источника питания. Они подают напряжение на общий выключатель (QF1). Далее ток подводится к двум контакторам KM1 и KM2, после чего отводится к обмоткам электромотора. С правой стороны схема реверса, представленная вашему вниманию на рисунке выше, содержит описание составных частей каждого контактора по отдельности.

Читайте также:
Элементы внутреннего водостока

Порядок включения реверсивного электромотора

Руководствуясь все той же схемой подключения мотора с реверсом, несложно понять, каким образом включается силовой агрегат. Сначала задействуется общий выключатель, подающий ток по всем фазам. Но напряжение сразу не поступает на рабочие части электромотора, а занимает выжидательное положение, пока не будет дана команда, в какую сторону вращать ротор. Провода подсоединяются к защитному автомату, размыкающему электроцепь в случае короткого замыкания, и далее идут на кнопку быстрого включения/отключения электроустановки. Дальнейшие инструкции о режиме работы электромотор получает через две кнопки модульных блоков, обеспечивающих вращение вправо или влево. Только после нажатия одной из пусковых кнопок питание поступает на обмотку электромотора. Схема организована так, чтобы исключить возможность одновременного подсоединения этих двух контактов.

Чтобы обеспечить электромотору возможность обратного вращения, нужно переключить фазы. Для этого собственно и используется магнитный пускатель. В приведенной схеме один пусковой блок подсоединяет фазы к двигателю напрямую, а второй выполняет данное действие уже со смещением. Одна из фаз в такой цепи находится в ждущем положении – ее размыкание обесточивает весь силовой агрегат. Кроме того, правильно подключенный реверс электродвигателя обычно предусматривает наличие дополнительного модуля защиты, который контролирует процесс начала нового цикла, а именно предварительную остановку электромотора. Клавиша активации второго пускателя, меняющего положение фаз, срабатывает только при условии полной остановки работы электроустановки. При этом дежурная фаза никуда не девается и продолжает поступать на первый контакт электромотора. Меняются местами только вторая и третья фазы, обеспечивая реверсивную работу силового агрегата. Порядок запуска реверсивного хода мотора может отличаться в зависимости от параметров источника питания – однофазного на 220B или трехфазного на 380B.

Этапы подключения к сети с тремя фазами

С помощью приведенной выше схемы несложно понять, в какой последовательности должно происходить подключение электромотора в трехфазной электросети. Сначала монтируется основной силовой выключатель, рассчитанный на потребляемое напряжение и токовые характеристики конкретного силового агрегата, который планируется запустить в работу. Данному этапу стоит уделить особое внимание, поскольку от него напрямую зависит бесперебойная работа электроустановки. При неправильном подборе автомата он будет постоянно срабатывать, размыкая цепь в самый ответственный момент, или же не сработает в аварийной ситуации, что приведет к порче оборудования и создаст опасную для здоровья обслуживающего персонала обстановку.

Следующий этап – монтаж предохранительного автомата. Перед установкой основного силового и защитного автоматического выключателя обязательно следует обесточить электрическую цепь. Далее провода отводятся на стоповую кнопку, позволяющую в случае необходимости одним движением остановить работу силового агрегата, а уже затем напряжение подается на контакторы. Для облегчения процесса подключения на кнопочных блоках и ячейках контактора обычно делаются соответствующие условные обозначения.

Этапы подключения к однофазной электросети

Нередко возникает необходимость запустить асинхронный электромотор в обычных бытовых условиях, где наличие трехфазной электросети не предусмотрено. В такой ситуации нужно знать, как подсоединить силовой агрегат к сети на 220B. Чтобы ротор начал вращательное движение, здесь потребуется дополнительное импульсное воздействие, для чего в электрическую цепь, как правило, включается конденсатор нужной емкости.

При использовании конденсатора скорость оборотов не меняется, а мощность заметно снижается. Потери мощности могут быть разными вплоть до пятидесяти процентов в зависимости от конденсаторной емкости и конкретных условий эксплуатации электродвигателя. Кроме того, не все модели силовых агрегатов могут работать в однофазной электросети. Обычно такая возможность прописана в технической документации к изделию и указана на прикрепленной к корпусу бирке.

Из большого количества предлагаемых сейчас в интернете вариантов подключения электромотора к сети 220B стандартными считаются две методики – «звезда» и «треугольник». Рекомендуется сначала ознакомиться с документацией на конкретно взятый электрический двигатель и рассмотреть заводскую табличку с параметрами на его корпусе, чтобы выяснить, на какое напряжение рассчитаны обмотки и как их можно подсоединять.

В схеме «треугольник» один контакт подключается через конденсатор к обмотке, а два других выводятся для подсоединения к источнику питания. В таком случае без нагрузки вал электромотора будет свободно вращаться с нужной скоростью, но если его сильно нагрузить, то вращение существенно замедлится или прекратится полностью. Решить данную проблему можно, если дополнительно подключить еще один конденсатор для выполнения только одной задачи – запуска электромотора, после чего он разряжается и спустя пару секунд отключается.

Чтобы пусковой конденсатор для электромотора включился в цепь, обычно используется отдельная кнопка кратковременного запуска. После раскрутки ротора она размыкает контакты, а вал продолжает вращаться по инерции при поддержке магнитного поля обмотки. В качестве такого переключателя можно задействовать реле или готовую кнопку с контактной группой на пружине, которая при отпускании подымает контакты и отключается от цепи. Чтобы избежать короткого замыкания между витками, рекомендуется использовать тепловое реле, отключающее дополнительную обмотку в случае критического повышения температуры.

Также здесь можно задействовать центробежный выключатель, размыкающий цепь при превышении допустимого значения оборотов. Контактная пластина под действием центробежных сил оттягивается и при достижении заданной скорости оборотов обесточивает силовую установку или передает сигнал на альтернативный механизм управления. Вариантов реализации регулировки скорости вращения и автоматической защиты от перенапряжения есть несколько. Выключатель может стоять как непосредственно на роторном валу, так и на других частях конструкции, подключаться напрямую или через редуктор. Бывают случаи, когда в одной схеме задействован и центробежный выключатель, и тепловое реле.

Читайте также:
Цвета и их назначение труб канализации

Для работы электродвигателя, подключенного по методике «звезда», через одну его обмотку пропускается единичная фаза 220 вольт, а через две других – линейное напряжение 380 вольт. Рабочий конденсатор подключается к выходным концам обмоток, два из которых выводятся для подсоединения к однофазной электросети, а свободный конец замыкает на конденсатор через сетевую фазу. Стоит отметить, что подключение «треугольником» делается проще и потери мощности будут меньше, чем в схеме «звезда». Поэтому по возможности следует применять именно «треугольник», но если модель вашего электромотора такой способ подключения не поддерживает, то остается только вариант со «звездой».

В нашем случае нужно не только запустить электромотор, но также обеспечить возможность реверсивного движения. Для этого поступающее от конденсатора питание должно переключаться между полюсами. Реализовать это можно с помощью двух переключателей и одной кнопки без фиксации положения. С помощью одного выключателя будет подаваться напряжение на цепь питания электромотора, а второй переключатель должен иметь трехпозиционную конструкцию. В одной позиции силовой агрегат отключается, а во второй и третьей меняет полярность подключения обмоток так, чтобы ротор мотора крутился в разные стороны. Не фиксируемая кнопка предназначена для подключения второго конденсатора-пускателя.

Порядок действий следующий. Два исходящих провода от обоих конденсаторов скручиваются между собой, а к двум другим подключается кнопка запуска. Средний выход от трехпозиционного переключателя соединяется со скрученными конденсаторными выходами, а два других отводятся к клеммам электромотора с целью подачи на него питания. Конденсаторы также подсоединяются к обмоточным пусковым выходам, а кнопка включения монтируется в разрыв фазного проводника. Для запуска всей этой конструкции в работу сначала подается напряжение на основной переключатель и с помощью трехпозиционного элемента управления указывается нужное направление движения силового агрегата. Затем зажимается не фиксируемая пусковая кнопка и отпускается после разгона ротора до рабочей скорости вращения. Чтобы запустить электромотор в другую сторону, его нужно отключить от источника питания и дождаться полной остановки вала. Только потом переключить тумблер в позицию реверсивного хода.

Применение реверсивного пускателя

Такой элемент управления электрической цепью, как реверсивный пускатель достаточно часто встречается в современном оборудовании, где предусмотрена функциональная возможность менять направление вращения ротора электромотора. Для промышленного применения выпускаются пускатели как для использования электрических двигателей с реверсом, так и для прямого их подключения. Все они используются для коммутации силовых агрегатов и подачи напряжения на электромотор. Только возможности реверсивного варианта дополнены функцией запуска мотора для работы в разных направлениях.

От обычных контакторов магнитный пускатель отличается тем, что обеспечивает защиту оборудования при режиме работы, предусматривающем частые запуски и остановки электроустановки. Такие устройства нередко включаются в схемы реверсивной работы электромотора при удаленном управлении системами вентиляции и кондиционирования, башенными кранами, насосными станциями, сверлильными и токарными станками, лифтами и многими другими промышленными и бытовыми механизмами.

В конструкцию типового магнитного пускателя входят следующие основные компоненты:

  • электромагнитный блок движущимся якорем и катушкой;
  • магнитный провод нормально разомкнутого типа;
  • силовые контакты, предназначенные для замыкания/размыкания фаз электромотора при его включении и выключении (в реверсивных моделях они обычно находятся со стороны якорной обмотки и в верхней части устройства);
  • коммутационные блоковые контакты для управляющей электроцепи;
  • возвратный механизм для перевода пускателя в исходное положение, оснащенный пружиной (якорь под действием пружины вытягивается из катушки и размыкает контакты).

Процесс подключения магнитного пускателя как прямого, так и реверсивного типа достаточно простой, поэтому с данной работой вполне справится человек, имеющий базовые познания в электротехнике. Особых специализированных навыков и глубоких познаний в радиоэлектронике здесь не требуется. По сравнению с обычными пусковыми устройствами, пускатели с реверсом имеют дополнительную управляющую цепь, а также некоторые особенности подсоединения силовой части. Схема уже содержит встроенную защиту от токов короткого замыкания через нормально замкнутые контакты на каждом из пусковых блоков.

Включение реверсивного магнитного пускателя в работу можно разделить на несколько этапов:

  • после активации основного выключателя подается напряжения на два блока силовых контактов, обеспечивающих вращение электромотора вправо или влево;
  • при нажатии кнопки на первом пусковом блоке подается управляющий ток на одну катушку пускателя, в результате чего внутри нее замыкаются нормально разомкнутые контакты, а в другой катушке наоборот размыкаются нормально замкнутые контакты;
  • напряжение поступает на силовые контакты электромотора и ротор начинает вращаться;
  • при необходимости, изменение направления вращения вала электрического мотора осуществляется посредством второго пускового блока, меняющего положение фаз (переключение на него происходит после отключения обмотки двигателя и полной остановки вращательного движения ротора);
  • нажатие кнопки на втором пусковом блоке активирует вторую пусковую обмотку, меняющую порядок включения силовых контактов и вызывающую реверсивное движение вала электромотора до тех пор, пока контакты управления обмоткой не будут снова разомкнуты.
Читайте также:
Эффективное водяное отопление с незамысловатым набором составных частей

В представленной вашему вниманию схеме защитный автомат обозначается как SF1, стоповая кнопка – SB1, первая пусковая кнопка – SB2, вторая кнопка пуска – SB3, прямой и реверсивный пусковые блоки – КМ1 и КМ2 соответственно.

Защита электромотора при включении реверса

Здесь главное запомнить, что переключение на реверсивное движение и любые работы, связанные силовыми контактами и сменой их положения проводятся только после обесточивания силового агрегата и остановки движения рабочей части механизма. Благодаря включенным в схему подключения нормально замкнутым контактам исключается возможность междуфазного замыкания при переключении электромотора на реверс. Другими словами, активным может быть только один пускатель и одна пусковая обмотка.

Из всего вышеперечисленного можно сделать вывод, что организовать подключение и запуск в работу реверсивного электродвигателя достаточно просто, если соблюдать некоторые несложные рекомендации. Но при любом способе подсоединения и работе в обычной однофазной сети мощностные характеристики трехфазного электромотора все равно будут ограничены, поскольку нельзя обеспечить для него полноценное энергопотребление. Также рекомендуется не экономить на дешевых комплектующих и строго придерживаться правил электробезопасности.

Реверсивная схема подключения электродвигателя

  1. Переменная сеть: мотор 380 к сети 380
  2. Переменная сеть: электродвигатель 220 к сети 220
  3. Переменная сеть: 380В к 220В
  4. Постоянный электроток: особенности

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

  • Автомат;
  • Кнопочный пост;
  • Контакторы.

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Читайте также:
Холодильники со встроенным телевизором

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Схема подключения реверсивного пускателя

Электромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

  • Реверсивные и нереверсивные пускатели
  • Возможности пускателей
  • Конструкция реверсивного магнитного двигателя
    • Особенности функционирования модели
    • Правила подключения
  • Реверсивное подключение трехфазного двигателя
    • Переключение системы при противоположном вращении
    • Изменение поворотного движения
  • Защита цепей от короткого замыкания

По сущности, электромагнитный пускатель — это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях — и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение — цепь размыкается. Каждый контакт находится в дугогасительной специальной камере.

Реверсивные и нереверсивные пускатели

Устройства бывают различных видов и выполняют все поставленные задачи.

Пускатели бывают двух типов:

  • нереверсивные;
  • реверсионные.

В реверсивном пускателе в одном корпусе существуют два единичных магнитных устройства, имеющих электрическое подсоединение между собой и прикреплённых в совокупном основании, но функционировать может только один из данных пускателей — или только первый, или только второй.

Реверсивный прибор вводится через естественно-закрытые блокировочные контакты, роль которых — устранить синхронное включение двух групп контактов — реверсивной и нереверсивной, для того чтобы не случилось межфазного замыкания. Определённые модификации реверсивных пускателей для предоставления этой же функции имеют защиту. Фазы питания возможно переключать по очереди для того, чтобы выполнялась главная функция реверсивного пускателя — перемена направления вращения электродвигателя. Изменился порядок чередования фаз — поменялось и направление ротора.

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Конструкция реверсивного магнитного двигателя

Распространение этих модификаций становится все обширнее с каждым годом, так как они помогают управлять асинхронным двигателем на дистанции. Это приспособление даёт возможность как включать, так и отключать мотор.

Читайте также:
Фундамент для дома из бревна 12х12: инструкция по монтажу своими руками, какой тип конструкции

Корпус реверсивного пускателя состоит из таких следующих частей:

  1. Контактор.
  2. Тепловое микрореле.
  3. Кожух.
  4. Инструменты управления.

После того как поступила команда «Пуск», цепь замыкается. Далее ток начинает передаваться на катушку. В это же время действует механическое блокирующее приспособление, которое не дает запуститься ненужным контактам. Здесь нужно отметить, что механическая блокировка также закрывает и контакты клавиши, это дает возможность не удерживать её надавленной постоянно, а спокойно освободить. Еще одна важная часть состоит в том, что вторая клавиша этого устройства совместно с пуском всего аппарата будет размыкать электрическую цепь. Благодаря этому даже надавливание не дает практически никакого результата, формируя дополнительную безопасность.

Особенности функционирования модели

При нажатии клавиши «Вперед» действует катушка, и вводятся контакты. Вместе с этим выполняется операция пусковой клавиши постоянно разомкнутыми контактами устройства КМ 1.3, благодаря чему при непосредственном отпускании клавиши питание на катушку действует по шунтированию.

После введения первого пускателя размыкаются именно контакты КМ 1.2, что отключает катушку К2. В итоге при непосредственном нажатии в клавишу «Назад» ничего не происходит. Для того чтобы ввести мотор в обратную сторону необходимо надавить «Стоп» и обесточить К1. Все блокировочные контакты возвратиться могут в противоположное состояние, после этого возможно ввести мотор в противоположном направлении. Аналогично при этом вводится К2 и отключается блок с контактами. Происходит включение катушки 2 пускателя К1. К2 содержит силовые контакты КМ2, а К1- КМ1. К кнопкам для подсоединения от пускателя следует провести пятижильный провод.

Правила подключения

В любой установке, в которой требуется пуск электродвигателя в прямом и в противоположном направлении, непременно существует электромагнитный прибор реверсивной схемы. Подсоединение подобного элемента не считается столь непростой задачей, как может показаться на первый взгляд. К тому же нужность подобных задач возникает довольно часто. К примеру, в сверловочных станках, отрезных конструкциях либо же лифтах, если это не касается домашнего применения.

Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. Кроме того, для реализации переключения подобная установка оборудована клавишей. Подобная система, как правило, защищена от замыкания. Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов (КМ1.2 и КМ2.2), помещённых в позиции (КМ1 и КМ2).

Реверсивное подключение трехфазного двигателя

При работе выключателя QF1, одновременно все без исключения три фазы прилегают к контактам пускателя (КМ1 и КМ2) и находятся в таком состоянии. При этом первая стадия, представляющая собой питание для цепочки управления, протекая через аппарат защиты схемы управления SF1 и клавишу выключения SB1, непосредственно подаёт напряжение в контакты под третьим номером, который относится к SB2, SB3. При этом существующий контакт 13НО приобретает значение основного дежурного. Подобным способом система считается целиком готовой к работе.

Переключение системы при противоположном вращении

Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1. Уже после этого совершается введение нормально-разомкнутых контактов и выключение нормально-замкнутых. Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. При этом все без исключения три фазы поступают в нужной обмотке двигателя, который, в свою очередь, начинает формировать вращательное перемещение.

Созданная модель предусматривает наличие одного рабочего приспособления. К примеру, может функционировать только лишь КМ1 либо же, напротив, КМ2. Отмеченная цепь обладает действительными элементами.

Изменение поворотного движения

Теперь для придания противоположного направления перемещения вам следует поменять состояние силовых фаз, что удобно совершить при помощи переключателя КМ2. Все совершается благодаря размыканию первой фазы. При этом все без исключения контакты вернутся в исходное состояние, обесточив обмотку мотора. Эта фаза считается ждущим режимом.

Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. Это влияние вынуждает мотор вращаться в противоположном направлении. Теперь КМ2 будет ведущим, и пока не случится его разъединение, КМ1 будет не задействован.

Защита цепей от короткого замыкания

Как уже было заявлено прежде, прежде чем осуществить процесс перемены фазности, необходимо прекратить вращение мотора. Для этого в системе учтены нормально-замкнутые контакты. Поскольку при их нехватке невнимательность оператора привела бы к межфазному непосредственному замыканию, которое может случиться в обмотке мотора второй и третьей фазы. Предложенная модель считается оптимальной, поскольку допускает работу только лишь одного магнитного пускателя.

Схема подсоединения реверсивного магнитного пускателя считается ядром управления, так как много электрооборудования функционирует на реверсе, и непосредственно этот аппарат меняет направление верчения мотора.

Реверсивные схемы электромагнитных пускателей устанавливают там, где они на самом деле нужны, поскольку существуют подобные устройства, а обратный процесс недопустим и может вызвать серьёзную поломку автоматического характера.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: