Трёхфазный переменный ток и сети на его основе

Трехфазный переменный ток

В настоящее время во всем мире получила наибольшее распространение трехфазная система переменного тока .

Трехфазной системой электрических цепей называют систему, состоящую из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода ( φ =2 π /3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током .

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока . По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода, как это показано на рис. 1.

Рис. 1. Графики зависимости от времени ЭДС, индуцированных в обмотках якоря генератора трехфазного тока

Как осуществляется подобный генератор легко понять из схемы на рис. 2.

Рис. 2. Три пары независимых проводов, присоединенных к трем якорям генератора трехфазного тока, питают осветительную сеть

Здесь имеются три самостоятельных якоря, расположенных на статоре электрической машины и смещенных на 1/3 окружности (120 о ). В центре электрической машины вращается общий для всех якорей индуктор, изображенный на схеме в виде постоянного магнита.

В каждой катушке индуцируется переменная ЭДС одной и той же частоты, но моменты прохождения этих ЭДС через нуль (или через максимум) в каждой из катушек окажутся сдвинутыми на 1/3 периода друг относительно друга, ибо индуктор проходит мимо каждой катушки на 1/3 периода позже, чем мимо предыдущей.

Каждая обмотка трехфазного генератора является самостоятельным генератором тока и источником электрической энергии. Присоединив провода к концам каждой из них, как это показано на рис. 2, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные электроприемники, например электрические лампы.

В этом случае для передачи всей энергии, которую поглощают электроприемники, требовалось бы шесть проводов. Можно однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, т. е. значительно сэкономить проводку.

Первый из этих способов, называется соединением звездой (рис. 3).

Рис. 3. Четырехпроводная система проводки при соединении трехфазного генератора звездой. Нагрузки (группы электрических ламп I, II, III) питаются фазными напряжениями.

Будем называть зажимы обмоток 1, 2, 3 началами, а зажимы 1 ‘ , 2 ‘ , 3 ‘ – концами соответствующих фаз.

Соединение звезд заключается в том, что мы соединяем концы всех обмоток в одну точку генератора, которая называется нулевой точкой или нейтралью , и соединяем генератор с приемниками электроэнергии четырьмя проводами: тремя так называемыми линейными проводами , идущими от начала обмоток 1, 2, 3, и нулевым или нейтральным проводом , идущим от нулевой точки генератора. Такая система проводки называется четырехпроводной .

Напряжения между нулевой точкой и началом каждой фазы называют фазными напряжениями , а напряжения между началами обмоток, т, е. точками 1 и 2, 2 и 3, 3 и 1, называют линейными . Фазные напряжения обычно обозначают U1 , U 2 , U 3 , или в общем виде U ф, а линейные напряжения – U12, U23 , U 31 , или в общем виде U л.

Между амплитудами или действующими значениями фазных и линейных напряжений при соединении обмоток генератора звездой существует соотношение U л = √ 3 U ф ≈ 1,73 U ф

Таким образом, например, если фазное напряжение генератора U ф = 220 В, то при соединении обмоток генератора звездой линейное напряжение U л – 380 В.

В случае равномерной нагрузки всех трех фаз генератора, т. е. при приблизительно одинаковых токах в каждой из них, ток в нулевом проводе равен нулю . Поэтому в этом случае можно нулевой провод упразднить и перейти к еще более экономной трехпроводной системе. Все нагрузки включаются при этом между соответствующими парами линейных проводов.

При несимметричной нагрузке ток в нулевом проводе не равен нулю, но, вообще говоря, он слабее, чем ток в линейных проводах. Поэтому нулевой провод может быть тоньше, чем линейные.

При эксплуатации трехфазного переменного тока стремятся сделать нагрузку различных фаз по возможности одинаковой. Поэтому, например, при устройстве осветительной сети большого дома при четырехпроводной системе вводят в каждую квартиру нулевой провод и один из линейных с таким расчетом, чтобы в среднем на каждую фазу приходилась примерно одинаковая нагрузка.

Другой способ соединения обмоток генератора, также допускающий трехпроводную проводку – это соединение треугольником, изображенное на рис. 4.

Рис. 4. Схема соединения обмоток трехфазного генератора треугольником

Здесь конец каждой обмотки соединен с началом следующей, так что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам этого треугольника — точкам 1, 2 и 3. При соединении треугольником линейное напряжение генератора равно его фазному напряжению : U л = U ф.

Таким образом, переключение обмоток генератора со звезды на треугольник приводит к снижению линейного напряжения в √ 3 ≈ 1,73 раза . Соединение треугольником также допустимо лишь при одинаковой или почти одинаковой нагрузке фаз. Иначе ток в замкнутом контуре обмоток будет слишком силен, что опасно для генератора.

Читайте также:
Шкаф для спальни или гостиной

При применении трехфазного тока отдельные приемники (нагрузки), питающиеся от отдельных пар проводов, также могут быть соединены либо звездой, т. е. так, что один конец их присоединен к общей точке, а оставшиеся три свободных конца присоединяются к линейным проводам сети, либо треугольником, т. е. так, что все нагрузки соединяются последовательно и образуют общий контур, к точкам 1, 2, 3 которого присоединяются линейные провода сети.

На рис. 5 показано соединение нагрузок звездой при трехпроводной системе проводки, а на рис. 6 — при четырехпроводной системе проводки (в этом случае общая точка всех нагрузок соединяется с нулевым проводом).

На рис. 7 показана схема соединения нагрузок треугольником при трехпроводной системе проводки.

Рис. 5. Соединение нагрузок звездой при трехпроводной системе проводки

Рис. 6. Соединение нагрузок звездой при четырехпроводной системе проводок

Рис. 7. Соединение нагрузок треугольником при трехпроводной системе проводки

Практически важно иметь в виду следующее. При соединении нагрузок треугольником каждая нагрузка находится под линейным напряжением, а при соединении звездой – под напряжением, в √ 3 раз меньшим. Для случая четырехпроводной системы это ясно из рис. 6. Но то же имеет место в случае трехпроводной системы (рис. 5).

Между каждой парой линейных напряжений здесь включены последовательно две нагрузки, токи в которых сдвинуты по фазе на 2 π /3. Напряжение на каждой нагрузке равно соответствующему линейному напряжению, деленному на √ 3 .

Таким образом, при переключении нагрузок со звезды на треугольник напряжения на каждой нагрузке, а следовательно, и ток в ней повышаются в √ 3 ≈ 1,73 раза. Если, например, линейное напряжение трехпроводной сети равнялось 380 В, то при соединении звездой (рис. 5) напряжение на каждой из нагрузок будет равно 220 В, а при включении треугольником (рис. 7) будет равно 380 В.

При подготовке статьи использовалась информация из учебника физики под редакцией Г. С. Ландсберга.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Трёхфазный переменный ток и сети на его основе

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

Таким образом, понятие «фаза» имеет в электротехнике два различных значения:

  • фаза как аргумент синусоидально изменяющейся величины;
  • фаза как составная часть многофазной электрической системы.

Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.

Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.

Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

– экономичность передачи электроэнергии на большие расстояния;

– самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

Читайте также:
Схема подключения блока выключателей с розеткой

– возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

– уравновешенность симметричных трехфазных систем.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.

Рис.3 Рис.4

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).

Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).

Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.

Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.

Схемы соединения трехфазных систем

Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 120°. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.

Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.

Соединение в звезду

На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.

Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).

Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.

Все величины, относящиеся к фазам, носят название фазных переменных, к линии – линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи и равны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе . Если система фазных токов симметрична, то . Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.

Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А,В и С к нейтральной точке N; – фазные напряжения нагрузки.

Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать

; (1)
; (2)
. (3)

Отметим, что всегда – как сумма напряжений по замкнутому контуру.

На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при основании, равными 300), в этом случае

(4)

Обычно при расчетах принимается . Тогда для случая прямого чередования фаз , (при обратном чередовании фаз фазовые сдвиги у и меняются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору (его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряжений и получаем: ; .

Соединение в треугольник

В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).

Читайте также:
Юбка из фатина своими руками, мастер-класс на взрослого, для девушки, девочки — как сшить пошагово с фото

Для симметричной системы ЭДС имеем

.

Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.

Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.

Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями

Аналогично можно выразить линейные токи через фазные токи генератора.

На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов

. (5)

В заключение отметим, что помимо рассмотренных соединений «звезда – звезда» и «треугольник – треугольник» на практике также применяются схемы «звезда – треугольник» и «треугольник – звезда».

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой принцип действия у трехфазного генератора?
  2. В чем заключаются основные преимущества трехфазных систем?
  3. Какие системы обладают свойством уравновешенности, в чем оно выражается?
  4. Какие существуют схемы соединения в трехфазных цепях?
  5. Какие соотношения между фазными и линейными величинами имеют место при соединении в звезду и в треугольник?
  6. Что будет, если поменять местами начало и конец одной из фаз генератора при соединении в треугольник, и почему?
  7. Определите комплексы линейных напряжений, если при соединении фаз генератора в звезду начало и конец обмотки фазы С поменяли местами.
  8. На диаграмме на рис. 10 (трехфазная система токов симметрична) . Определить комплексы остальных фазных и линейных токов.
  9. Какие схемы соединения обеспечивают автономность работы фаз нагрузки?

Трёхфазный переменный ток и сети на его основе

Система трёх синусоидальных токов, изменяющихся во времени и имеющих сдвиг по фазе, называется трёхфазным переменным током. При помощи этой системы создаются удобные и экономичные электродвигатели, производится передача электроэнергии на дальние расстояния, снижается материалоёмкость трансформаторов и силовых кабелей. На трёхфазном токе основана работа всех крупных электростанций и потребителей электроэнергии.

  • Историческая справка
  • Устройство генератора
  • Соединение обмоток электрической машины
  • Преимущества трёхфазных систем

Историческая справка

Трёхфазный ток — это частный случай многофазного тока. Впервые двухфазный ток был получен известным изобретателем Николой Теслой. Большой вклад в формирование трёхфазных систем внёс русский учёный М. О. Доливо-Добровольский. Он использовал трёх- и четырёхпроводную системы передачи переменного тока и на её основе построил асинхронный двигатель.

Главной особенностью его изобретения стал короткозамкнутый ротор типа «беличье колесо», который применяется в асинхронных электродвигателях и сейчас. Ещё одним достижением изобретателя была линия электропередачи, построенная им с использованием генератора и трансформаторов трёхфазного переменного тока. Длина линии составляла 170 км, что было огромным шагом вперёд для конца XIX века.

Устройство генератора

Трёхфазной системой считают состоящую из трёх электрических цепей конструкцию, в которой вырабатываются электродвижущие силы (ЭДС) одной и той же частоты, смещённые друг относительно друга на 120°. Синхронная электрическая машина большой мощности используется в качестве генератора. Она превращает механическую энергию вращения в электрическую. В пазах статора размещаются три обмотки, в которых индуцируются ЭДС, равные по амплитуде и отличающиеся по фазе на 1/3 периода.

Каждая обмотка (фаза) является самостоятельным источником электрической энергии. Ротор, выполненный в виде постоянного магнита, приводится во вращение электродвигателем. Магнитное поле вращающегося ротора индуцирует ЭДС в обмотках статора. Если присоединить к концам каждой обмотки провода, то получатся три независимые сети. В системе будет шесть проводов и никакого выигрыша по сравнению с тремя отдельными генераторами не происходит.

В современных трёхфазных сетях обычно используется три или четыре провода в зависимости от схемы подключения.

Соединение обмоток электрической машины

Обмотки генератора и нагрузок соединяются по схемам звезда или треугольник. При соединении в звезду образуется общая нулевая точка из связанных между собой концов обмоток, а к началам обмоток присоединяются линейные провода. Нейтрали или нулевые точки генератора и нагрузки связываются нулевым проводом. Напряжение, создающееся между линейным проводом и нулевым, называется фазным, а между двумя линейными проводами — линейным.

Нулевой провод предназначен для выравнивания напряжения на всех фазах при несимметричной нагрузке. Сила тока, протекающего в этом проводе меньше, чем в линейных проводах, что даёт возможность выбрать проводник меньшего сечения. Зависимости для линейных и фазных токов и напряжений при соединении звездой имеют вид: Iл = Iф, Uл = √3 Uф ≈ 1,73 Uф.

Читайте также:
Титан металл - его особенности

При выполнении схемы треугольник конец каждой обмотки соединяется с началом следующей. Для этой схемы используется три провода, ведущих от генератора к нагрузке. Соотношение между токами и напряжениями, линейным и фазным, равно: Uл = Uф, Iл = √3 Iф.

Обмотки генератора чаще соединяют по схеме звезда. При соединении треугольником каждая фаза должна рассчитываться на напряжение в 1,73 раза больше, чем при соединении звездой. Это влечёт за собой усиление изоляции обмоток, увеличение количества витков и удорожание машин.

В распределительных сетях, где присутствует много однофазных потребителей, обеспечение симметричной нагрузки на фазы становится невозможным. Такие сети исполняются четырехпроводными с нулевым проводником.

Проводники, принадлежащие различным фазам и нейтральные, имеют разные цвета. Это делается в целях обеспечения безопасности при электромонтажных работах и для удобства при ремонте и монтаже электрических сетей. В России нейтральный проводник обычно делается голубым, первая фаза — жёлтой, вторая — зелёной, третья — красной.

Выбор способа подключения для потребителя зависит от следующих характеристик:

  • номинального напряжения потребителей электрической энергии;
  • характера нагрузки;
  • подаваемого трёхфазного напряжения.

При практическом применении 3-фазных сетей важно помнить, что при подключении звездой на нагрузки действует фазное напряжение, а при подключении треугольником — линейное напряжение, которое в 1,73 раза больше, чем фазное.

Преимущества трёхфазных систем

Эти системы используются в промышленности, на транспорте, для электроснабжения жилых помещений. Такое широкое применение объясняется большими преимуществами, которые даёт эта система по сравнению с однофазной системой электроснабжения:

  • Требуется меньшее количество проводов, что даёт большую экономию при передаче электроэнергии на дальние расстояния.
  • Трёхфазные трансформаторы имеют меньшие размеры магнитопровода по сравнению с однофазными такой же мощности.
  • При работе создаётся вращающееся магнитное поле, необходимое для работы асинхронных двигателей.
  • Возможность использования двух рабочих напряжений.
  • Уравновешенность симметричных трёхфазных систем.

Распространение трёхфазных систем помогло решению многих задач электроснабжения, развитию передающих мощностей и совершенствованию технологических процессов. Использование трёхфазных трансформаторов, генераторов и электродвигателей значительно упростило и удешевило процесс генерации энергии и повысило доступность её для потребителей.

Трёхфазный ток. Преимущества при генерации и использовании.

Преимущества трёхфазного тока очевидны только специалистам электрикам. Что такое трехфазный ток для обывателя представляется весьма смутно. Давайте развеем неопределенность.

Содержание статьи

  • Трехфазный переменный ток
  • Откуда вообще появилось понятие переменный ток?
  • Выводы: преимущества трёхфазной системы

Трехфазный переменный ток

Большинство людей, за исключением специалистов – электриков, имеют весьма смутное представление, что такое так называемый «трёхфазный» переменный ток, да и в понятиях, что такое сила тока, напряжение и электрический потенциал, а также мощность, – часто путаются.

Попытаемся простым языком дать начальные понятия об этом. Для этого обратимся к аналогиям. Начнём с простейшей – протекания постоянного тока в проводниках. Его можно сравнить с водным потоком в природе. Вода, как известно, всегда течёт от более высокой точки поверхности к более низкой. Всегда выбирает самый экономичный (наикратчайший) путь. Аналогия с протеканием тока – полнейшая. Причём количество воды протекающей в единицу времени через какое-то сечение потока будет аналогично силе тока в электрической цепи. Высота любой точки русла реки относительно нулевой точки – уровня моря – будет соответствовать электрическому потенциалу любой точки цепи. А разница в высоте любых двух точек реки будет соответствовать напряжению между двумя точками цепи.

Используя эту аналогию можно легко представить в уме законы протекания постоянного электрического тока в цепи. Чем выше напряжение – перепад высот, тем больше скорость потока, и, следовательно, количество воды протекающей по реке в единицу времени.

Водный поток, точно так же как электрический ток при своём движении испытывает сопротивление русла – по каменистому руслу вода будет протекать бурно, меняя направление, немного нагреваясь от этого (бурные потоки даже в сильные морозы не замерзают вследствие нагрева от сопротивления русла). В гладком канале или трубе вода потечёт быстро и в итоге в единицу времени канал пропустит гораздо больше воды, чем извилистое и каменистое русло. Сопротивление потоку воды полностью аналогично электрическому сопротивлению в цепи.

Теперь представим закрытую бутылку, в которой налито немного воды. Если мы начнём эту бутылку вращать вокруг поперечной оси, то вода в ней будет перетекать попеременно от горлышка к донышку и наоборот. Это представление – аналогия переменному току. Казалось бы, одна и та же вода перетекает туда-сюда и что? Тем не менее, этот переменный поток воды способен совершать работу.

Откуда вообще появилось понятие переменный ток? к содержанию

Да с тех самых пор, когда человечество, узнав, что перемещение магнита вблизи проводника вызывает электрический ток в проводнике. Именно движение магнита вызывает ток, если магнит положить рядом с проводом и не двигать – никакого тока в проводнике это не вызовет. Далее, мы хотим получить (генерировать) в проводнике ток, чтобы использовать его в дальнейшем для каких-либо целей. Для этого изготовим катушку из медного провода и начнём возле неё двигать магнит. Магнит можно передвигать возле катушки как угодно – двигать по прямой туда-сюда, но, чтобы не двигать магнит руками, создать такой механизм технически сложнее, чем просто начать его вращать около катушки, аналогично вращению бутылки с водой из предыдущего примера. Вот именно таким образом – по техническим причинам – мы и получили синусоидальный переменный ток, используемый ныне повсеместно. Синусоида – это развёрнутое во времени описание вращения.

Читайте также:
Чем хороши шкафы-купе

В дальнейшем оказалось, что законы протекания переменного тока в цепи отличаются от протекания постоянного тока. Например, для протекания постоянного тока сопротивление катушки равно просто омическому сопротивлению проводов. А для переменного тока – сопротивление катушки из проводов значительно увеличивается из-за появления, так называемого индуктивного сопротивления. Постоянный ток через заряженный конденсатор не проходит, для него конденсатор – разрыв цепи. А переменный ток способен свободно протекать через конденсатор с некоторым сопротивлением. Далее выяснилось, что переменный ток может быть преобразован с помощью трансформаторов в переменный ток с другими напряжением или силой тока. Постоянный ток такой трансформации не поддаётся и, если мы включим любой трансформатор в сеть постоянного тока (что делать категорически нельзя), то он неизбежно сгорит, так как постоянному току будет сопротивляться только омическое сопротивление провода, которое делается как можно меньше, и через первичную обмотку потечёт большой ток в режиме короткого замыкания.

Заметим также, что электродвигатели могут быть созданы для работы и от постоянного тока, и от переменного тока. Но разница между ними такая – электродвигатели постоянного тока сложнее в изготовлении, но зато позволяют плавно изменять скорость вращения обычным регулирующим силу тока реостатом. А электродвигатели переменного тока гораздо проще и дешевле в изготовлении, но вращаются только с одной, обусловленной конструкцией скоростью. Поэтому в практике широко применяются и те, и другие. В зависимости от назначения. Для целей управления и регулирования применяются двигатели постоянного тока, а в качестве силовых установок – двигатели переменного тока.

Далее конструкторская мысль изобретателя генератора двигалась примерно в таком направлении – если удобнее всего для генерации тока использовать вращение магнита рядом с катушкой, то почему бы вместо одной катушки генератора не расположить вокруг вращающегося магнита несколько катушек (места-то вокруг вон сколько)?

Получится сразу же, как бы несколько генераторов, работающих от одного вращающегося магнита. Причём переменный ток в катушках будет отличаться по фазе – максимум тока в последующих катушках будет несколько запаздывать относительно предыдущих. То есть синусоиды тока, если их графически изобразить, будут, как бы между собой, сдвинуты. Это важное свойство – сдвиг фаз, о котором мы расскажем ниже.

Примерно так рассуждая, американский изобретатель Никола Тесла и изобрёл сначала переменный ток, а затем и трёхфазную систему генерации тока с шестью проводами. Он расположил три катушки вокруг магнита на равном расстоянии под углами 120 градусов, если за центр углов принять ось вращения магнита.

(Число катушек (фаз) вообще-то может быть любым, но для получения всех тех преимуществ, что даёт многофазная система генерации тока, минимально достаточно трёх).

Далее русский учёный электротехник Михаил Осипович Доливо-Добровольский развил изобретение Н. Тесла, впервые предложив трёх – и четырёхпроводную систему передачи трёхфазного переменного тока. Он предложил соединить один конец всех трёх обмоток генератора в одну точку и передавать электроэнергию всего по четырём проводам. (Экономия на дорогих цветных металлах существенная). Оказалось, что при симметричной нагрузке каждой фазы (равным сопротивлением) ток в этом общем проводе равняется нулю. Потому что при суммировании (алгебраическом, с учётом знаков) сдвинутых по фазе на 120 градусов токов они взаимно уничтожаются. Этот общий провод так и назвали – нулевой. Поскольку ток в нём возникает только при неравномерности нагрузок фаз и численно он небольшой, гораздо меньше фазных токов, то представилась возможность использовать в качестве «нулевого» провод меньшего сечения, чем для фазных проводов.

По этой же самой причине (сдвиг фаз на 120 градусов) трехфазные трансформаторы получились значительно менее материалоёмкими, так как в магнитопроводе трансформатора происходит взаимопоглощение магнитных потоков и его можно делать с меньшим сечением.

Сегодня трёхфазная система электроснабжения осуществляется четырьмя проводами, три из них называются фазными и обозначаются латинскими буквами: на генераторе – А, В и С, у потребителя – L1, L2 и L3. Нулевой провод так и обозначается – 0.

Напряжение между нулевым проводом и любым из фазных проводов называется – фазным и составляет в сетях потребителей – 220 вольт.

Между фазными проводами тоже существует напряжение, причём значительно выше, чем фазное напряжение. Это напряжение называется линейным и составляет в цепях потребителей 380 вольт. Почему же оно больше фазного? Да всё это из-за сдвига фаз на 120 градусов. Поэтому, если на одном проводе, к примеру, в данный момент времени потенциал равен плюс 200 вольт, то на другом фазном проводе в этот же момент времени потенциал будет минус 180 вольт. Напряжение – это разность потенциалов, то есть оно будет + 200 – (-180)=+380 В.

Читайте также:
Установка балконной защелки

Возникает вопрос, если по нулевому проводу ток не протекает, то нельзя ли его вообще убрать. Можно. И мы получим трёхпроводную систему электроснабжения. С соединением потребителей так называемым «треугольником» – между фазными проводами. Однако нужно заметить, что при неравномерной нагрузке в сторонах «треугольника» на генератор будут действовать разрушающие его нагрузки, поэтому данную систему можно применять при огромном количестве потребителей, когда неравномерности нагрузок нивелируются. Передача электроэнергии от больших электростанций при высоких фазных и линейных напряжениях (сотни тысяч вольт) так и осуществляются. Почему же применяется такое высокое напряжение. Ответ простой – чтобы уменьшить потери в проводах на нагрев. Так как нагрев проводов (потери энергии) пропорционален квадрату протекающего тока, то желательно чтобы протекающий ток был минимален. Ну а для передачи необходимой мощности при минимальном токе нужно повышать напряжение. Линии электропередач (ЛЭП) так и обозначаются, к примеру, ЛЭП – 500 – это линия электропередачи под напряжением 500 киловольт.

Кстати потери в проводах ЛЭП можно ещё более снизить, применяя передачу постоянного тока высокого напряжения (перестаёт действовать емкостная составляющая потерь, действующая между проводами), проводились даже такие эксперименты, но широкого распространения пока такая система не получила, видимо вследствие большей экономии в проводах при трёхфазной системе генерации.

Выводы: преимущества трёхфазной системы к содержанию

В заключение статьи подведём итоги, – какие же преимущества даёт трёхфазная система генерации и электроснабжения?

  1. Экономия на количестве проводов, необходимых для передачи электроэнергии. Учитывая немалые расстояния (сотни и тысячи километров) и то, что для проводов используют цветные металлы с малым удельным электрическим сопротивлением, экономия получается весьма существенной.
  2. Трёхфазные трансформаторы, при равной мощности с однофазными, имеют значительно меньшие размеры магнитопровода. Что позволяет получить существенную экономию.
  3. Очень важно, что трёхфазная система передачи электроэнергии создаёт при подключении потребителя к трём фазам как бы вращающееся электромагнитное поле. Опять-таки, вследствие сдвига фаз. Это свойство позволило создать чрезвычайно простые и надёжные трёхфазные электродвигатели, у которых нет коллектора, а ротор, по сути, представляет собой простую «болванку» в подшипниках, к которой не нужно подсоединять никакие провода. (На самом деле конструкция короткозамкнутого ротора имеет свои особенности и вовсе не болванка) Это так называемые трёхфазные асинхронные электродвигатели с короткозамкнутым ротором. Очень широко распространённые сегодня в качестве силовых установок. Замечательное свойство таких двигателей – это возможность менять направление вращения ротора на обратное простым переключением двух любых фазных проводов.
  4. Возможность получения в трёхфазных сетях двух рабочих напряжений. Другими словами менять мощность электродвигателя или нагревательной установки путём простого переключения питающих проводов.
  5. Возможность значительного уменьшения мерцаний и стробоскопического эффекта светильников на люминисцентных лампах путём размещения в светильнике трёх ламп, питающихся от разных фаз.

Благодаря этим преимуществам трёхфазные системы электроснабжения получили широчайшее распространение в мире.

Трёхфазная система электроснабжения

Один из вариантов многофазной системы электроснабжения — трехфазная система переменного тока. В ней действуют три гармонические ЭДС одной частоты, создаваемые одним общим источником напряжения. Данные ЭДС сдвинуты по отношению друг к другу во времени (по фазе) на один и тот же фазовый угол, равный 120 градусов или 2*пи/3 радиан.

Первым изобретателем шестипроводной трехфазной системы был Никола Тесла, однако немалый вклад в ее развитие внес и российский физик-изобретатель Михаил Осипович Доливо-Добровольский, предложивший использовать всего три или четыре провода, что дало значительные преимущества, и было наглядно продемонстрировано в экспериментах с асинхронными электродвигателями.

В трехфазной системе переменного тока каждая синусоидальная ЭДС находится в собственной фазе, участвуя в непрерывном периодическом процессе электризации сети, поэтому данные ЭДС иногда именуют просто «фазами», как и передающие данные ЭДС проводники: первая фаза, вторая фаза, третья фаза. Фазы сдвинуты друг относительно друга на 120 градусов, а соответствующие проводники принято обозначать латинскими буквами L1, L2, L3 или A, B, C.

Такая система очень экономична, когда речь идет о передаче электрической энергии по проводам на большие расстояния. Трехфазные трансформаторы менее материалоемки.

Силовые кабели требуют меньше проводящего металла (как правило используется медь), поскольку токи в фазных проводниках, по сравнению с однофазными, имеют меньшие действующие величины, если сравнивать с однофазными цепями аналогичной передаваемой мощности.

Трехфазная система очень уравновешена, и оказывает равномерную механическую нагрузку на энергогенерирующую установку (генератор электростанции), чем продлевает срок ее службы.

При помощи трехфазных токов, пропускаемых через обмотки электрических потребителей — различных установок и двигателей, легко получить вращающееся вихревое магнитное поле, необходимое для работы двигателей и других электроприборов.

Синхронные и асинхронные трехфазные двигатели переменного тока имеют простое устройство, и гораздо экономичнее однофазных и двухфазных, а тем более — классических двигателей постоянного тока.

С трехфазной сетью в одной установке можно получить сразу два рабочих напряжения — линейное и фазное, что позволяет иметь два уровня мощности в зависимости от схемы соединения обмоток – «треугольник» (англоязычный вариант «дельта») или «звезда».

Что касается питания систем освещения, то присоединив три группы ламп – к различным фазам сети каждую, – можно значительно снизить мерцание и избавиться от вредного стробоскопического эффекта.

Перечисленные преимущества как раз и обуславливают широкое применение именно трехфазной системы электроснабжения в большой мировой электроэнергетике сегодняшнего дня.

Звезда

Соединение по схеме «звезда» предполагает соединение концов фазных обмоток генератора в одну общую «нейтральную» точку (нейтраль – N), как и концов фазных выводов потребителя.

Провода, соединяющие фазы потребителя с соответствующими фазами генератора называются в трехфазной сети линейными проводами. А провод, соединяющий между собой нейтрали генератора и потребителя — нейтральным проводом (обознаяается «N»).

При наличии нейтрали, трехфазная сеть получается четырехпроводной, а если нейтраль отсутствует — трехпроводной. В условиях, когда сопротивления в трех фазах потребителя равны друг другу, то есть при условии что Za = Zb = Zc, нагрузка будет симметричной. Это идеальный режим работы для трехфазной сети.

При наличии нейтрали, фазными называются напряжения между любым фазным проводом и нейтральным проводом. А напряжения между любыми двумя фазными проводами именуются линейными напряжениями.

Если сеть имеет схему соединения «звезда», то в условиях симметричной нагрузки соотношения между фазными и линейными токами и напряжениями могут быть описаны следующими соотношениями:

Видно, что линейные напряжения сдвинуты по отношению к соответствующим фазным на угол в 30 градусов (пи/6 радиан):

Мощность при соединении «звезда» в условиях симметричной нагрузки, с учетом известных фазных напряжений можно определить по формуле:

О важности нейтрали и «перекосе фаз»

Хотя при абсолютно симметричной нагрузке питание потребителей возможно по трем проводам линейными напряжениями даже в отсутствие нейтрали, тем не менее если нагрузки на фазах не строго симметричны, нейтраль всегда обязательна.

Если же при несимметричной нагрузке нейтральный провод оборвется, либо его сопротивление по какой-то причине значительно возрастет, произойдет «перекос фаз», и тогда нагрузки на трех фазах могут оказаться под разными напряжениями — от нуля до линейного — в зависимости от распределения сопротивлений нагрузок по фазам в момент обрыва нейтрали.

А ведь нагрузки номинально рассчитаны строго на фазные напряжения, значит что-то может выйти из строя. Особенно перекос фаз опасен для бытовой техники и электроники, поскольку из-за этого может не просто перегореть какой-нибудь прибор, но и случиться пожар.

Проблема гармоник кратных третьей

Наиболее часто бытовая и другая техника оснащается сегодня импульсными блоками питания, причем без встроенной схемы коррекции коэффициента мощности. Это значит, что моменты потребления ограничиваются тонкими импульсными пиками тока вблизи вершины сетевой синусоиды, когда конденсатор выходного фильтра, установленный после выпрямителя, резко и быстро подзаряжается.

Когда таких потребителей к сети подключено много, возникает высокий ток третьей гармоники основной частоты питающего напряжения. Данные токи гармоник (кратных третьей) суммируются в нейтральном проводнике и способны перегрузить его, несмотря на то, что на каждой из фаз потребляемая мощность не превышает допустимой.

Проблема особенно актуальна в офисных зданиях, где размещено на небольшом пространстве много разной оргтехники. Если бы во всех встроенных импульсных блоках питания имелись схемы коррекции коэффициента мощности, это бы решило проблему.

Треугольник

Соединение по схеме «треугольник» предполагает со стороны генератора соединение конца проводника первой фазы с началом проводника второй фазы, конца проводника второй фазы с началом проводника третьей фазы, конца проводника третьей фазы с началом проводника первой фазы — получается замкнутая фигура — треугольник.

Линейные и фазные напряжения и токи при симметричной нагрузке, применительно к соединению «треугольник», соотносятся следующим образом:

Мощность в трехфазной цепи при соединении треугольником, в условиях симметричной нагрузки, определяется следующим образом:

В нижеприведенной таблице отражены стандарты фазных и линейных напряжений для разных стран:

Проводники разных фаз трехфазной сети, а также нейтральные и защитные проводники традиционно маркируют собственными цветами.

Так поступают для того, чтобы предотвратить поражение электрическим током и обеспечить удобство обслуживания сетей, облегчить их монтаж и ремонт, а также сделать стандартизированной маркировку фазировки оборудования: порядок чередования фаз порой очень важен, например для задания направления вращения асинхронного двигателя, режима работы управляемого трехфазного выпрямителя и т. д. В разных странах цветовая маркировка различна, в некоторых совпадает.

Трёхфазный переменный ток и сети на его основе

Трехфазная система переменного тока

Электростанции вырабатывают трехфазный переменный ток. Генератор трехфазного тока представляет собой как бы три объединенных вместе генератора переменного тока, работающих так, чтобы сила тока (и напряжение) изменялась у них не одновременно, а с отставанием на 1/3 периода. Это осуществляется за счет смещения катушек генераторов на 120° одна относительно другой (рис. справа).


Каждая часть обмотки генератора называется
фазой. Поэтому генераторы, которые имеют обмотку, состоящую из трех частей, называют трехфазными.

Следует отметить, что термин «фаза» в электротехнике имеет два значения: 1) как величина, которая совместно с амплитудой определяет состояние колебательного процесса в данный момент времени; 2) в смысле наименования части электрической цепи переменного тока (например, часть обмотки электрической машины).

Некоторое наглядное представление о возникновении трехфазного тока дает установка, изображенная на рис. слева.
Три катушки от школьного разборного трансформатора с сердечниками размещаются по окружности под углом 120° по отношению друг к другу. Каждая катушка соединена с демонстрационным гальванометром. В центре окружности на оси укрепляется прямой магнит. Если вращать магнит, то в каждой из трех цепей «катушка — гальванометр» возникает переменный ток. При медленном вращении магнита можно заметить, что наибольшее и наименьшее значения токов и их направления будут в каждый момент во всех трех цепях различными.

Таким образом, трехфазный ток представляет совместное действие трех переменных токов одинаковой частоты, но сдвинутых по фазе на 1/3 периода относительно друг друга.
Каждая обмотка генератора может соединяться со своим потребителем, образуя несвязанную трехфазную систему. Выигрыша от такого соединения нет никакого по отношению к трем отдельным генераторам переменного тока, так как передача электрической энергии осуществляется с помощью шести проводов (рис. справа).

На практике получили два других способа соединения обмоток трехфазного генератора. Первый способ соединения получил название звезды (рис. слева, а), а второй — треугольника (рис. б).

При соединении звездой концы (или начала) всех трех фаз соединяются в один общий узел, а от начал (или концов) идут провода к потребителям. Эти провода называются линейными проводами. Общую точку, в которой соединяются концы фаз генератора (или потребителя), называют нулевой точкой, или нейтралью. Провод, соединяющий нулевые точки генератора и потребителя, называют нулевым проводом. Нулевой провод применяется в том случае, если в сети создается неравномерная нагрузка на фазы. Он позволяет уравнять напряжения в фазах потребителя.

Нулевой провод, как правило, применяется в осветительных сетях. Даже при наличии одинакового количества ламп равной мощности во всех трех фазах равномерная нагрузка не сохраняется, так как лампы могут включаться, выключаться не одновременно во всех фазах, могут перегорать, и тогда равномерность нагрузки фаз будет нарушена. Поэтому для осветительной сети применяется соединение в звезду, которая имеет четыре провода (рис. справа) вместо шести при несвязанной трехфазной системе.

При соединении в звезду различают два вида напряжения: фазное и линейное. Напряжение между каждым линейным и нулевым проводом равно напряжению между зажимами соответствующей фазы генератора и называется фазным ( U ф ), а напряжение между двумя линейными проводами — линейным напряжением ( U л ).

Между фазными и линейными напряжениями можно установить соотношение:

если рассмотреть треугольник напряжения (рис. слева).

Ил= ^ч-Т^-г-Т^-сойШ^ Сф-л/2 + 2-со5б0° = л/3 -Ц,

На практике широкое распространение получили трехфазные цепи с нейтральными проводами при напряжениях U Л = 380 В; U Ф = 220 В.

Поскольку в нулевом проводе при симметричной нагрузке сила тока равна нулю, то ток в линейном проводе равен току в фазе.
При неравномерной нагрузке фаз по нулевому проводу проходит уравнительный ток относительно малой величины. Поэтому сечение этого провода должно быть значительно меньше, чем у линейного провода. В этом можно убедиться, если включить четыре амперметра в линейные и нулевой провода. В качестве нагрузки удобно использовать обычные электрические лампочки (рис. справа).

При одинаковой нагрузке в фазах ток в нулевом проводе равен нулю и надобность в этом проводе отпадает (например, равномерную нагрузку создают электродвигатели). В этом случае производят соединение в «треугольник», которое представляет собой последовательное соединение друг с другом начал и концов катушек генератора. Нулевой провод в этом случае отсутствует.
При соединении обмоток генератора и потребителей «треугольником» фазные и линейные напряжения равны между собой,
т.е. U Л = U Ф , а линейный ток в √3 раз больше фазного тока I Л = √3 . I Ф

Соединение треугольником применяется как при осветительной, так и при силовой нагрузке. Например, в школьной мастерской станки можно включать в звезду или треугольник. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников электрической энергии.
Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение, в раз большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машин. Поэтому фазы трехфазных генераторов почти всегда соединяют звездой. Двигатели же иногда в момент пуска включают звездой, а затем переключают на треугольник.

Дизайн трехкомнатной хрущевки — 40 примеров планировки на фото

Слово «хрущевка» вызывает неприглядные ассоциации, являясь объектом неизменного подшучивания. Но значит ли это, что такое обиталище обязательно должно быть типовым, тесным, унылым? Отнюдь! Сегодня каждый желающий может сделать из своей «хрущобы» уютные современные апартаменты. Достаточно обратиться к опыту специалистов, чтобы понять, какие чудеса творятся при помощи ремонта собственной квартиры. Неважно, займетесь ли вы перепланировкой или ограничитесь косметическим ремонтом. Современный дизайн хрущевки или панельного дома советского образца из 3 комнат волшебным образом преобразит ваше жилье, сделав его функциональным, комфортным, стильным.

Важные особенности

Здания хрущевской эпохи возводились как временное жилище, следовательно, не могут похвалиться особым удобством. Поэтому их владельцам часто приходится прибегать к разного рода преобразованиям для повышения комфортности собственного дома.

Следует отметить, что при условии регулярного капитального ремонта здания, построенные в хрущевскую эпоху, простоят еще многие годы. Поэтому владельцам есть смысл тратить силы на улучшение жилищных условий путем дизайнерских уловок, добиваясь максимального комфорта.

Этому типу жилья свойственны следующие особенности:

  • небольшая высота потолков;
  • наличие проходных комнат;
  • маленький размер апартаментов;
  • тесная кухня;
  • совмещенный санузел;
  • низкая звуко- и теплоизоляция.

ВАЖНО! Внутренние перегородки хрущевок не являются несущими, что позволяет спокойно сносить их при перепланировке.

Варианты типичной планировки

Существует несколько версий стандартной планировки трехкомнатных хрущевок:

  • «распашонка»: одна просторная комната плюс две маленьких. Наименее удобный вариант для радикальной перестройки;
  • «книжка»: две просторные смежные комнаты плюс одна маленькая отдельная. Перепланировка потребует больших затрат площади;
  • «трамвай»: помещения проходные, напоминающие салон трамвая, часто выстроены линией. При перепланировке необходимо ставить дополнительные перегородки для изоляции;
  • хрущевка 60 м2: все помещения полностью изолированы друг от друга. Комфортный вариант, какие-либо радикальные изменения могут не понадобиться.

В зависимости от разновидности выбирают варианты организации пространства. Сеть интернет предоставляет желающим огромное количество фото разнообразных проектов, среди которых легко найти подходящий. Вы также можете обратиться к профессиональному дизайнеру, чтобы он создал уникальный проект специально для вашего случая.

Особенности перепланировки

Перепланировка – радикальный способ, по-настоящему преобразующий облик вашего дома. Изменить размеры жилища, конечно, не получится. Но расширить полезную площадь такими методами вполне реально.

Способов перепланировки существует два:

  1. Снести все перегородки, не являющиеся несущими, превратив апартаменты в квартиру-студию. Обозначить зоны кухни, столовой, гостиной, выделить кабинет, детскую. Для разграничения зон используются легкие перегородки, разноуровневый пол, цветные переходы оформления, разные типы покрытия и т.д.
  2. Совершить частичное объединение: кухня с гостиной, санузел с прихожей, балкон со спальней и т.д.

ВАЖНО! Расширяя гостиную за счет балкона, убедитесь, что он способен выдержать дополнительную нагрузку!

Дополнительно создать эффект простора можно, расширив оконные проемы. Заменив старые окна на современные стеклопакеты, вы улучшите теплоизоляцию своих апартаментов, а просторные окна впустят солнечный свет, воздух. Подоконник легко превратить в компактный встроенный стол. Посмотреть, как это выглядит, можно на фото из сети интернет.

Перепланировка санузла

Полезная площадь может быть увеличена за счет санузла. Здесь также возможны разновидности изменений:

  • демонтировать перегородку между ванной и туалетом;
  • заменить массивную ванну современной душевой кабиной. Это позволяет разместить на освободившемся месте стиральную машину, освобождая место на кухне;
  • увеличить высоту дверного проема: благодаря этому приему весь санузел будет казаться выше;
  • расширить санузел за счет части коридора, встроенного шкафа или кладовой. Понадобится дополнительная гидроизоляция.

ВАЖНО! Увеличивать санузел, захватывая территорию жилого помещения, запрещается санитарными нормами!

Настоящим бедствием трехкомнатных хрущевок являются смежные комнаты. Они смотрятся ужасно на фото, а тем более дома: если с вами проживает несколько членов семьи, то в проходных помещениях становится невозможно отдохнуть. Сократив часть площади одной из жилых комнат, можно провести коридор до конца квартиры. Проходы в ванную и кухню при этом располагаются по обе стороны коридора, изолируя апартаменты.

Все должно быть законно

Планируя капитальный ремонт, посоветуйтесь с экспертами. Они подскажут вам, какие изменения могут быть внесены, а какие категорически запрещаются.

При составлении проекта необходимо учитывать:

  • в некоторых случаях демонтаж стен может быть запрещен;
  • любое изменение конфигурации стен должно быть согласовано и зарегистрировано;
  • нельзя переносить санузел, поскольку это может повредить систему канализации во всем многоэтажном доме;
  • при наличии газовой плиты объединение кухни и гостиной запрещено. Ставьте электрическую плиту либо воспользуйтесь легкой перегородкой.

Для создания проекта могут потребоваться услуги профессиональных дизайнеров. Особенно если вы собираетесь изменять конфигурацию стен квартиры. Обращение к специалистам гарантирует вам грамотный проект, который намного легче согласовать.

Необходимо знать, что любые изменения планировки обязательно должны быть согласованы и зарегистрированы. Прежде, чем начинать работу, необходимо собрать пакет необходимых документов, получить лицензионный проект будущего жилья, соответствующий нормам строительства.

Как увеличить пространство?

Даже если вы не планируете заниматься сносом стен, полезную площадь «трешки» реально увеличить, грамотно распорядившись имеющейся территорией:

  • избегайте лишних деталей обстановки, не загромождайте жилье. Любой предмет, использованный в дизайне квартиры, должен быть функциональным;
  • делайте акцент на высоте: стремящиеся вверх шкафы, грамотная расстановка мебели, правильное освещение;
  • вешайте зеркала, расставляйте прозрачные стеклянные поверхности;
  • кладовку можно превратить в удобную гардеробную, поставив полки, вешалки, комод для хранения небольших предметов. Гардеробная станет отличной заменой шкафу, позволяя существенно сэкономить место;
  • лоджия или балкон может стать рабочим кабинетом, уютным уголком для чаепитий или миниатюрным тренажерным залом. Необходимо утеплить лоджию или балкон, чтобы можно было пользоваться им круглый год;
  • вместо обычных распашных дверей лучше установить двери-купе или гармошку. Это позволяет выиграть до 1 м2;
  • освещение должно быть ярким, обильным. Вместо одной массивной люстры используйте несколько точечных светильников. Способы их расположения легко найти на фото в интернете. Хорошо освещенные комнаты всегда выглядят просторнее.

Выбираем стиль интерьера

При выборе дизайна интерьера для трехкомнатной хрущевки на первый план выходит функциональность. Ведь территория невелика, значит, распорядиться ей нужно грамотно. Поэтому пышные стили, предполагающие обильное декорирование, здесь неуместны.

Наилучшим решением станет экономный эффектный современный стиль минимализм. Он не просто выглядит шикарно, но позволяет эксплуатировать жилье с наибольшей эффективностью.

Основные черты минимализма:

  • общий фон выполнен в светлых оттенках;
  • простое герметичное оформление;
  • зеркальные, стеклянные элементы, добавляющие воздуха;
  • деление территории на функциональные зоны;
  • вместо объемных шкафов применяются компактные вертикальные конструкции под потолок;
  • многофункциональная мебель-трансформер: раздвижные столы, настенные шкафчики, аккуратные тумбочки;
  • мебель расставляется по углам, освобождая центр комнаты;
  • осветительные приборы по возможности маскируются;
  • как можно больше естественного освещения.

Просмотрев фото дизайн-проектов в стиле минимализм, можно почерпнуть множество полезных идей, заодно убедившись, что стиль этот выглядит великолепно.

Выбираем напольное покрытие

Изначальное напольное покрытие хрущевок – деревянные доски, которые рассчитаны на срок службы не более 20-30 лет. Они нуждаются в замене, особенно если вы затеваете капитальный ремонт квартиры. Если вы собираетесь использовать линолеум или ламинат, необходимо предварительно снять старые доски, выровнять пол.

Превосходным напольным покрытием для 3-х комнатной квартиры является плитка. Для ее укладки не нужно дополнительно выравнивать поверхность пола. Благодаря фото из интернета вы можете подобрать красивую плитку, не выходя из дома.

Если вы объединили свои три комнаты в студию, необходимым условием является зонирование. Невероятно эффектно выглядит разноуровневый пол с отличающимся покрытием. В различные цвета окрашиваются также стены (используйте обои, краску или декоративную штукатурку). В итоге получается стильное просторное жилище с обилием воздуха и света.

Выбираем потолок

Всем известной проблемой «хрущоб» являются низкие потолки. Исправить столь существенный недостаток можно только с помощью умелого дизайна. Это обстоятельство диктует свои правила в оформлении:

  • откажитесь от объемных люстр, заменив их несколькими яркими точечными светильниками;
  • светлые оттенки создают в комнате ощущение простора, дополнительной высоты. Избегайте темных цветов;
  • многоуровневая конструкция из гипсокартона задает стиль, делая апартаменты зрительно выше;
  • создать эффект визуального увеличения высоты поможет глянцевая натяжка или зеркало;
  • натяжные и гипсокартонные конструкции крадут по несколько сантиметров высоты при монтаже, поэтому в особо низеньких комнатах от них лучше отказаться;
  • вместо натяжных конструкций в оформлении лучше предпочесть правильно подобранные обои или краску. Они создают иллюзию высоты, ощущение простора, легкости.

Выбираем мебель

Грамотно подобранная меблировка также позволит вам отвоевать немалую часть жизненного пространства, поможет создать стильный образ вашего жилья.

Существуют несколько правил выбора обстановки для маленьких квартир:

  • на первом месте должна стоять функциональность, только потом – внешний вид;
  • отдавайте предпочтение обстановке четких геометрических форм, с гладкой поверхностью;
  • приоритет – мобильность: складная кровать или шкафчик, компактный комод;
  • плотно прилегающие к полу столы, кровати;
  • для экономии стоит выбрать вместо стульев компактные передвижные пуфики;
  • откажитесь от массивных конструкций: они требуют слишком много места;
  • сэкономить место помогут высокие шкафы: за счет увеличения высоты можно уменьшить их глубину без ущерба для полезного объема шкафа.

ВАЖНО! Не стоит выбирать излишне глубокие шкафы: для них требуется много места.

Выбираем цветовую гамму

Правильно подобранная цветовая гамма визуально расширяет пространство даже небольшой квартиры. В типовой хрущевке мало свободного места. Поэтому следует тщательно отнестись к выбору оттенков меблировки, пола, стен, потолочного покрытия:

  • светлые цвета создают иллюзию большего объема;
  • мелкий узор на обоях делает комнату просторнее, крупный – уменьшает пространство;
  • лучше отказаться от использования в дизайне насыщенных ярких цветов: они визуально сокращают пространство, заставляя ваше обиталище выглядеть маленьким и тесным. В качестве ярких акцентов в дизайне квартиры используйте подушки, картины, фото и сувениры;
  • глянцевый натяжной фальшпотолок визуально расширит пространство, если цвет его светлее тона стен;
  • отдельным цветовым элементом дизайна может стать объемная штукатурка, обои с декоративным орнаментом;
  • для детской оптимальными являются нежные пастельные тона: они успокаивающе влияют на ребенка;
  • небольшая кухня будет казаться просторнее, если вы используете зеркальные поверхности – например, холодильник и шкафы.

Изначально своеобразное расположение комнат в квартире хрущевских времен не способствует комфортному проживанию. Поэтому дизайн трехкомнатной хрущевки должен быть продуманным. Основной целью ремонта должна стать функциональность – разумеется, не в ущерб превосходному внешнему облику. Тогда старенькая «хрущоба» превратится в уютное и комфортное для всех ее обитателей жилье, которым вы сможете гордиться.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: